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Abstract

This paper develops a novel and e¢ cient algorithm for Bayesian infer-
ence in Gamma Stochastic Volatility models. It is shown that by condi-
tioning on auxiliary variables, it is possible to sample all the volatilities
jointly directly from their posterior conditional density, using simple and
easy to draw from distributions. Furthermore, this paper develops a gen-
eralized Gamma process that allows for more �exible tails in the distrib-
ution of volatilities. Using several macroeconomic and �nancial datasets,
it is shown that Gamma and Generalized Gamma processes can greatly
outperform log normal volatility processes with student-t errors.

JEL: C11, C15
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1 Introduction

There is overwhelming empirical evidence in favor of Stochastic Volatility mod-
els with both macroeconomic (e.g. Sims and Zha 2006) and �nancial data (e.g.
Kim et al. (1998)). The �rst algorithms for posterior simulation where devel-
oped for the case in which the volatility �t follows an autoregressive log-normal
process. The �rst algorithms used a single-move update for the volatilities (e.g.
Jacquier, Polson and Rossi (1994)), which implies that �t is generated condi-
tionally on the volatility values in other periods (�1; :::; �t�1; �t+1; :::; �T ). To
improve the convergence speed, it was later proposed to sample several of the
volatility values at a time using blocking strategies (e.g. Shephard and Pitt
(1997), Watanabe and Omori (2004), Asai (2005)). In an in�uential paper, Kim
et al. (1998) showed that by accurately approximating the likelihood with a
mixture of normals, it is possible to draw jointly all the latent volatilities given
some auxiliary variables. Furthermore, the log-volatilities can be integrated out
when drawing the unknown parameters.
A more recent literature provides methods for Bayesian inference in mod-

els where �t follows some type of gamma process. In a multivariate stochastic
volatility context, Philipov and Glickman (2006) proposed a single-move algo-
rithm whereas Fox and West (2011) proposed to sample all the volatility matri-
ces jointly in a Metropolis-step which conditions on auxiliary variables. Creal
(2012), in the univariate context, proposed maximum likelihood estimation by
accurately approximating the likelihood with a �nite state Markov-switching
model. There is also a recent literature that deals with Ornstein-Ulhlenbeck with
marginal gamma laws (e.g. Barndor¤-Nielsen and Shephard (2001), Roberts et
al. (2004), Gri¢ n and Steel (2006), Frühwirth-Schnatter and Sögner (2009)).
The purpose of this paper is to develop e¢ cient posterior simulators for �ex-

ible gamma stochastic volatility models. We show that by conditioning on some
auxiliary variables, it is possible to draw all the volatilities jointly using simple
distributions such as the Poisson and Gamma. Furthermore, it is possible to
draw the unknown parameters after integrating out all the volatilities. Because
of these features, our algorithm mimicks the e¢ cient algorithm that Kim et al
(1998) developed for the lognormal model. Furthermore, this paper proposes
a generalized gamma model that allows for a more �exible distribution for the
volatility. The generalized gamma process allows for more abrupt jumps in
volatility. In an empirical exercise we show that this feature makes the gener-
alized gamma process especially suitable to model series with periods of great
instability.
Section 2 describes the gamma and generalized gamma processes and Section

3 develops the posterior simulators. Section 4 presents evidence on the com-
putational e¢ ciency of the algorithms and Section 5 compares di¤erent models
using several macroeconomic and �nancial time series. Section 6 concludes.

2



2 Models

2.1 Autoregressive Gamma Process (TARG)

We consider the following model of stochastic volatility:

yt = xt� + �t"t

"t � N(0; 1)

Although for simplicity in the exposition we are assuming normality for
"t, in the empirical applications we will consider also models where "t follows
a student-t. The student-t can be easily incorporated into this framework by
writing it as a mixture of normals, as in Chib et al (2002). The stochastic process
for the volatility �t can be described by de�ning kt = �

�2
t and assuming that

kt = z
0
tzt, where zt is a n� 1 vector distributed as a Gaussian AR(1) process:

zt = �zt�1 + "t "t � N(0; �2In) (1)

Equation (1) implies that the conditional distribution of (kt=�
2)jkt�1 is a

noncentral chi squared, which is also well de�ned for non-integer values of n,
and therefore we will treat n as a continuous unknown parameter. The joint
distribution of (k1; :::; kT ) is the multivariate gamma distribution analyzed by
Krishnaiah and Rao (1961). It was proposed for observed volatility by Gourier-
oux and Jasiak (2006) and for unobserved volatility by Creal (2012). In our
case we are using it for the inverse of the unobserved volatility, as this makes
Bayesian computations simpler. This is in line with the Bayesian analysis of Fox
and West (2011), who specify a Wishart distribution for the inverse volatility
matrix.
The properties of (k1; :::; kT ) are well known (e.g. Krishnaiah and Rao

(1961)) and the most important ones can be summarized as:

� E(kt) = n�2

1��2 , E(k
2
t ) =

�
�2

1��2

�2
n(n+ 2)

� corr(kt; kt�h) = �2h

� E(ktjkt�1) = �2kt�1 + (1� �2)E(kt)

� The conditional distribution kt
�2
jkt�1 is a noncentral chi squared.

� The stationary distribution of kt is a G(n=2; 2�2

1��2 ), where G(:) represents
the gamma distribution (Bauwens et al. (1999), p. 290)

� A necessary and su�cient condition for stationarity is j�j < 1

In the following it will be assumed that k1 is drawn from the stationary
distribution, that is k1 � G(n=2; 2�2=(1� �2)).
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2.2 Flexible Tail Autoregressive Gamma Process (FTARG)

The parameters (n; �2; �2) control the unconditional mean, variance and the �rst
order correlation of kt. However, the degrees of freedom n also control the shape
of the tails of the distribution of k and therefore also the tails of the distribution
of y. Hence it might be desirable to consider models where the shape of the tails
is not determined by the �rst two unconditional moments of the distribution.
For this purpose we propose the Flexible Tail Autoregressive Gamma Process
(FTARG). Recall that kt = z0tzt. Instead of zt = �zt�1 + "t we now assume:

zt =

qeTt(�zt�1 + "t)
where ( eT2; :::; eTT ) are independent draws from a beta distrubution B(�; �). If

we write e�t = qeTt� and e�2t = eTt�2 it is clear that the FTARG process arises

from (1) by writing e�t instead of � and e�2t instead of �2. When the variance ofeTt approaches 0, the variable eTt behaves similar to a constant, and therefore the
FTARG becomes equivalent to a TARG. Thus, when the variance of eTt is close
to 0, the mean of eTt is poorly identi�ed. To avoid this local non-identi�cation
problem, we reparameterize (�; �) as A = A = �=(�+�) and V = (�+�), and
�x A = 1=2. Therefore with this normalization we have that � = � = V=2. The

parameter V controls the variance of eTt and will be estimated.
The properties of the FTARG can be derived using basic properties of the

gamma and beta distributions. De�ning e�2 = E( eTt)�2 and e�2 = E( eTt)�2, the
main properties of (k1; :::; kT ) are:

� E(kt) = ne�2
1�e�2 , E(k2t ) =

�e�2�2 n(n+ 2) E(v2c)

[E(eTt)]2
� corr(kt; kt�1) = e�2
� The su¢ cient and necessary condition for the process to be stationary ise�2 < 1. When E( eTt) is normalized to be 1=2 the stationarity condition
becomes �2 < 2.

� The stationary distribution of kt is that of the product of "0t"t (i.e. a
gamma distribution) and vc, where vc = (1+�2 eTt+�4 eTt eTt�1+�6 eTt eTt�1 eTt�2+
:::). Note that "0t"t and vc are independent and therefore all the moments
of kt can be derived from basic properties of the gamma and beta distri-
butions.

In the following it will be assumed that k1 is drawn from a distribution whose

�rst two moments coincide with the stationary distribution: k1 � G(n=2; 2e�2=(1�e�2)).
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3 Computation by Gibbs Sampling

3.1 Autoregressive Gamma Process (TARG)

In this section we will use the notation e�t =qeTt� and e�2t = eTt�2 for t = 2; :::; T
and e�1 = e� =qE( eTt)�, e�21 = e�2 = E( eTt)�2 with the understanding that in the
TARG model eTt = 1 and so e�t = � and e�2t = �2 for every t. In this way the
conditional posterior densities derived in this section will be valid for both the
TARG and the FTARG models when eT is among the conditioning variables As
noted before the prior of kte�2t jkt�1 is a noncentral chi squared. From Muirhead

(1982, p. 23) it turns out that a noncentral chi squared can be written as
a mixture of (central) chi-squared with degrees of freedom n + 2ht, where ht
follows a Poisson. Using this representation, the model can be written as:

yt = xt� +

r
1

kt
"t (2)

"t � N(0; 1)

ktjk1:(t�1); h1:t;�; � � G(n=2 + ht; 2e�2t )
htjk1:(t�1);h1:(t�1);�; � � P (�t) with �t =

e�2tkt�1
2e�2t

where G(:) represents the gamma distribution (Bauwens et al. (1999), p. 290),
P (:) is the Poisson distribution (Koop (2003), p. 325) and k1:(t�1) is notation
for (k1; :::; k(t�1)). Let � = (n; �

2; �), k = (k1; :::; kT ) and h = (h2; :::; hT ). The
representation (2) suggests the �rst Gibbs sampling algorithm that we consider:

The h-Gibbs
� Generate �jh; � (Metropolis step)

� Generate kjh;�; � (draw from independent gamma).

� Generate hjk;�; � (draw from independent Bessel distributions).

� Generate �jk; h;� (draw from a multivariate normal).

5



Note that for greater e¢ ciency � is drawn marginally on k. For this reason
k needs to be drawn immediately after �, so that the algorithm converges to
the joint posterior distribution. An advantage of this algorithm is that all the
precisions in the vector k can be drawn jointly from the conditional posterior.
Similarly, as noted by Creal (2012), the vector h can be drawn jointly from the
posterior conditional using a discrete distribution known as Bessel distribution
(Yuan and Kalb�eisch (2000)). Devroye (2002) and Iliopoulos and Karlis (2003)
have developed e¢ cient algorithms to draw from the Bessel distribution. The
conditional distributions needed in the h-Gibbs algorithm are summarized in
the following proposition, whose proof is in the appendix.

Proposition 1 Consider the model de�ned by (2), and de�ne:

r2t = (yt � xt�)2

er2t =

 
1 + e�2te�2t + r2t

!�1
for t = 2; :::; T � 1

er2t =

 
1e�2t + r2t

!�1
for t = 1 and t = T

h1 = hT+1 = 0

The conditional posteriors are as follows:

ktjh;�; �; Y � G((n+ 1)=2 + ht + ht+1; 2er2t ) for t = 1; :::; T
htjk;�; �; Y � Bessel(

n� 2
2

;e�tpktkt�1e�2t ) for t = 2; :::; T

and

p(�jY; h; �) /
Z
p(�)p(k; hj�)L(Y jk; �)dk = (3)

TY
t=1

��
2er2t �n+12 +ht+1+ht

�

�
n+ 1

2
+ ht+1 + ht

��
264 TY
t=2

1�
2e�2t�n=2

�
�
2�2

�2ht
ht!

1

[n=2]ht

375 (1� e�2)n=2 �2e�2��n
2
�
�
�n
2

���T
p(�)

where L(Y jk; �) is the density function of the observed data Y given the volatil-
ities k and p(�) is the prior.

However, the convergence of this algorithm can be slow because of the high
correlation between k and h. Indeed, once we condition upon h, the di¤erent
components of k become independent of each other, even if unconditionally the
serial correlation of kt is tipically very high. This suggests that h contains too
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much information about k and so ideally we would like to draw k and h jointly.
Thus we consider a second Gibbs algorithm that surpasses this problem, and
that also has the advantage of drawing from distributions that are simpler than
the Bessel. For this purpose we introduce two vectors of auxiliary variables, one
of them continuous m = (m2; :::;mT ) and another discrete d = (d2; :::; dT ), such
that we will be able to draw (k; h) jointly conditioning on (m; d) and viceversa.
Using simple properties of the beta distribution the appendix shows that the
transition equation for h in (2) can be equivalently written as:

Pr(ht = sjk1:(t�1);h1:(t�1);m1:t) =

�st
s!m

s
t

[n=2]s
[(n�1)=2]s

1F1(n=2; (n� 1)=2;mt�t)
(4)

�t =
e�2tkt�1
2e�2t

p(mtjm1:(t�1)) =
�(�m + �m)

�(�m)�(�m)

(1F1(n=2; (n� 1)=2;mt�t))

exp(�t)
m�m�1
t (1�mt)

�m�1

�m =
n� 1
2

�m =
1

2
m1 = 1 (5)

where [x]s is notation for the rising factorial [x]s = (x)(x + 1):::(x + s � 1),
with [x]0 = 1, and 1F1(:) is a hypergeometric function (e.g. Muirhead (1982, p.
258)):

1F1(n=2; (n� 1)=2;�t) =
1X
s=0

�st
s!
ms
t

[n=2]s
[(n� 1)=2]s

The advantage of this parameterization is that the posterior of htj(k1:(t�1);
h1:(t�1); m1:t) is a �nite mixture of shifted Poissons, whereas the posterior of
ktjk1:(t�1); h1:t;m1:t continues to be a Gamma. This is what makes possible
the joint sampling of the two vectors k and h conditional on m. However,
the calculation of the probabilities of each component of the mixture could be
time consuming, especially when T is large. For this reason we have preferred
to condition on a mixture indicator dt, such that the conditional posterior of
ht becomes a shifted Poisson. This implies that conditional on (m; d), the
two vectors k and h can be drawn jointly from the conditional posterior using
simple gamma and Poisson distributions. In turn, (m; d)j(k; h) can be drawn
using independent beta distributions (for m) and a �nite discrete distribution
for d.
A shifted Poisson results from adding a �xed constant to a random variable

with Poisson distribution (Winkelmann (2008, p.10)). We use the notation
ht � SP (�t; dt) to mean that (ht� dt) follows a Poisson distribution (i.e. (ht�
dt) � P (�t)). The probability density function of a shifted Poisson distribution
is:

fSP (hjd; �) = �h�d
1

(h� d)!
1

exp(�)
h = d; (d+ 1); ::: (6)
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The vector d is formally introduced in the model by using the following prior
that depends on h:

Pr (dt = sjht; dt+1) =
[ht]

s

s!
[1+dt+1]

s

[(n�1)=2]sP(1+dt+1)
s=0

�
[ht]s

s!
[1+dt+1]s

[(n�1)=2]s

� t = 2; :::; T
0 � s � (1 + dt+1)

dT+1 = 0
(7)

where [x]s is notation for the falling factorial [x]s = (x)(x � 1):::(x � s + 1),
with [x]0 = 1. Note that dT can take only two values, 0 and 1. The support of
dT�1jdT is from 0 up to (1+dT ), so dT�1 could at most take value 2. Similarly,
the support of dtjd(t+1):T is from 0 up to (1 + dt+1), such that d2 could take at
most value (T � 1). However, in our applications to real data we have found
dt to be at most 20 even when T = 10168, and so each dt was drawn from a
discrete distribution de�ned on a relatively small set of values. Note also that
the term [ht]

s in the probability implies that dt � ht.
Thus the Gibbs algorithm that uses (m; d) as auxiliary variables can be

described as:

The m-Gibbs for TARG
� �j(m; d); � using a Metropolis step.

� (k; h)j(m; d);�; � using gammas and poisson.

� (m; d)j(k; h);�; � using beta and the �nite discrete distribution in (7).

� Generate �jk; h;� (draw from a multivariate normal).

Note that for greater e¢ ciency � is drawn marginally on (k; h). Therefore,
the step to draw (k; h) needs to come just after drawing �, so that the joint
posterior continues to be the stationary distribution. The following proposition
describes the distributions that are used in the m-Gibbs.

Proposition 2 Given the model described in equations (2), (4) - (5), and the
following de�nitions:br2T = er2T

br2t =

0@ 1er2t �mt+1

 e�t+1e�2t+1
!2 br2t+1

1A�1

for t = 1; :::; T � 1

m1 = 1; d1 = dT+1 = 0; �t =
e�2tkt�1
2e�2t ; b�t = �tmtbr2te�2t

the conditional posteriors are as follows:

mtjY; k; h � B((n� 1)=2 + ht; 1=2);
ktjY; k1:(t�1); h1:t;m; d � G((n+ 1)=2 + ht + dt+1; 2br2t )

htjY; k1:(t�1);h1:(t�1);m; d � SP (b�t; dt)
8



The conditional posterior djY; k; h;m is the same as the conditional prior in (7).
In addition:

p(�jY;m; d) /
Z
p(�)p(k; h;m; dj�)L(Y jk)dkdh =

"
TY
t=1

�
2br2t �n+12 +dt+1+dt

#264 TY
t=2

0@mt

 e�t
2e�2t
!21Adt

375" TY
t=1

�

�
n+ 1

2
+ dt+1

�#
�

"
TY
t=2

1

dt!

[1 + dt]
dt�1

[(n� 1)=2]dt

#"
TY
t=2

m�m�1
t (1�mt)

�m�1

#
�

�
�
�n
2

���T
CpCLCBp(�)

where

Cp =
�
1� e�2�n=2 TY

t=1

�
2e�2t��n

2

CL = (2�)
�T=2

CB =

�
� (�m) � (�m)

� (�m + �m)

��(T�1)
�m = (n� 1)=2; �m = 1=2

3.2 Flexible Tail Autoregressive Gamma Process (FTARG)

As described later in Proposition 3, the conditional posterior density of eTtjV; h;�
is proportional to: �eTt��t�1 �1� eTt�V=2�1� 1

1 + eTtSt
�vt

(8)

with:

�t =
V

2
+ ht+1 +

1

2

vt =
n+ 1

2
+ ht + ht+1

St = �2(r2t + �
2=�2)

It can be seen that this kernel is that of an in�nite mixture of beta distrib-
utions if we write the last term as a series (e.g. Muirhead (1985, p. 259)):�

1

1 + eTtSt
�vt

=
1

(1 + St)
vt

1X
s=0

�
St

1 + St
(1� eTt)�s [vt]s

s!

Thus one possibility to draw eTt is to draw from a mixture of betas. However,
calculating the probability of each component of the mixture requires evaluation
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of the hypergeometric function 2F1(:), which could be computationally demand-
ing. Another possibility is to draw from (8) using a Metropolis-step. However,
this would require calibrating the proposal density. In this paper we facilitate
the drawing of eTt by introducing an auxiliary variable Jt such that eTtjJt and
Jtj eTt can be both drawn from simple distributions. The variable Jt is introduced
as a discrete random variable with probability density function:

Pr
�
Jt = sj eTt; St� =  1 + eTtSt

1 + St

!vt �
St

1 + St
(1� eTt)�s [vt]s

s!
(9)

Since the probabilities in (9) can be easily calculated, it is possible to draw Jt
using the inverse transform sampling method (e.g. Gamerman and Lopes (2006,
p. 13)). Furthermore, eTt conditional on Jt becomes a simple beta distribution
B(�t; V=2 + Jt).
Therefore, a sampling algorithm for the FTARG model can be obtained by

adding the following three steps to sample eT = (eT2; :::; eTT ), J = (J2; :::; JT ) and
V to any of the two algorithms described in the previous section:

Additional Steps for the FTARG
� V j(k; h);�; J; � using a Metropolis step.

� eT j(k; h);�; J; V; � using beta distributions.
� J j(k; h);�; eT ; J; V; � using the discrete distribution in (9).
Note that V is sampled marginally on eT to increase the e¢ ciency of the

algorithm. However, for this reason, the step to sample eT needs to come imme-
diately after sampling V , so as to ensure that the algorithm converges to the
joint posterior distribution.
Proposition 2 in the previous section and the following proposition describe

the distributions that are necessary in this algorithm.

Proposition 3 The conditional posterior densities for eT , and V in the FTARG
model are as follows:eTtjJt � B(�t; V=2 + Jt)

p(V jY; J) / p(V )

�
�(V )

�(V=2)�(V=2)

�T�1 TY
t=2

�(�t)�(V=2 + Jt)

�(�t + V=2 + Jt)

The conditional posterior density for Jt is the same as the conditional prior
given in (9).

4 Evidence on the E¢ ciency of the Algorithms

First let us compare the e¢ ciency of the h-Gibbs and the m-Gibbs algorithm
using 2000 daily observations of the exchange rate Yen - US dollar (6th Aug
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ESS ESS/TIME
h-Gibbs m-Gibbs h-Gibbs m-Gibbs

�2T=2 0.0224 0.0755 64.5 151.0
�2 0.0471 0.4472 135.7 894.4
n 0.0022 0.0135 6.2 26.9
� 0.0002 0.0024 0.6 4.8
� 0.0003 0.0030 0.8 6.1
�0 0.2701 0.7507 777.8 1501.4
�1 0.5709 0.7790 1644.1 1558.0

Table 1: ESS and ESS/TIME for the h-Gibbs and the m-Gibbs algorithm using
2000 observations of the US-Japan exchange rate.

2003 - 15th Jul. 2011). yt is the �rst di¤erence of the log exchange rate and
xt�1 includes a constant and a lag, so that � = (�0; �1). We compare the e¢ -
ciency of these algorithms using the e¤ective sample size (e.g. Brooks (1999)).
The e¤ective sample size measures the number of independent draws from the
posterior that is equivalent to 1 draw from an MCMC algorithm. Thus, algo-
rithms with larger values of ESS are more e¢ cient. Since the m-Gibbs takes
more time per iteration in our implementation, we present also the ESS ad-
justed for computation time (ESS/TIME). We can see that the m-Gibbs is 12
times more e¢ cient in terms of ESS for sampling �2 and �. When we control
for computation time it is still 8 times more e¢ cient. For the parameter n the
m-Gibbs is about 4 times more e¢ cient when controlling for computation time.
The m-Gibbs is also about 6.6 times more e¢ cient to sample the volatility at
the middle of the sample (�2T=2) and 2.3 times more e¢ cient to sample the aver-

age volatility (�2 =
PT

t=1 �
2
t ) after adjusting for computation time. The same

pattern can be observed with the other datasets that are used in this paper.
The acceptance rate of the Metropolis-step to sample � was about 55% in both
algorithms, which lies within the recommended range

5 Empirical Application

The aim of this section is to compare the empirical performance of several
models using real macroeconomic and �nancial data. In addition to the TARG
and FTARG described in the previous section, we consider the model where
�t follows a log-normal distribution (LNORM), as in Kim et al (1998). In
addition, we consider 3 models where "t follows a student-t distribution: TARG-
T, FTARG-T and LNORM-T. These 3 models are the same as TARG, FTARG
and LNORM models, respectively, but assume a student-t distribution for "t
instead of normal. We run the models separately on 5 datasets, 4 of which
are exchange rates (2 daily exchange rates and 2 monthly) and one dataset
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corresponds to UK in�ation (see Table 2 for more details on the data). The
dependent variable yt is either the level of in�ation or the �rst di¤erence of the
log exchange rate. When yt is the exchange rate, xt contains a constant and a
lag of yt. When yt is in�ation, xt contains a constant, two lags of in�ation, the
unemployment rate and two lags of the unemployment rate (as in the estimation
of a Phillips curve, e.g. Staiger et al. (1997) or Sargent et al. (2006)). The
exchange rate data was obtained from the Federal Reserve Bank of St. Louis,
and the in�ation and unemployment rate data from OECD (2010).
Table 3 shows the value of the log-likelihood at the posterior median of

parameters, calculated using a bootstrap particle �lter (e.g. Gordon et al. 1993).
In Table 3 we can see that the TARG model has a much higher value of the log
likelihood than the LNORM and LNORM-T models for the monthly India-US
and Brazil - US exchange rates. Furthermore, for these two exchange rates the
FTARG model is much superior than all the other simpler models (by more than
20 points or 36 points increase in the log likelihood with respect to the TARG).
The extension to student-t errors does not bring any noticeable improvement in
the value of the log-likelihood of the TARG or FTARG models, although it does
increase the log likelihood of the LNORM model. In summary, the FTARG is
a clear winner in the case of the monthly India-US and Brazil - US exchange
rates.
In the case of the Japan-US daily exchange rate, although the LNORM

and LNORM-T are clearly superior to the TARG and TARG-T, the FTARG-
T model seems to be the best as it gains 20 points in the log-likelihood over
the second best model (LNORM-T) for just one extra parameter. For this
dataset the assumption of student-t errors greatly improves the performance of
all models.
Regarding the EU-US exchange rate, the LNORM-T and TARG-T are sub-

stantially better than LNORM and TARG, again indicating that it is important
to allow for student-t errors. Both the LNORM-T and the TARG-T seem to per-
form equally well, whereas the FTARG and FTARG-T models do not bring any
noticeable increase in the log likelihood. Hence, the LNORM-T and TARG-T
could be said to joint winners for the EU-US exchange rate.
Finally, regarding the estimation of the Phillips curve for UK in�ation, all

models have very similar values for the log likelihood, indicating that the simpler
models (LNORM and TARG) might be more adequate to model this series.

6 Conclusions

This paper has developed e¢ cient posterior simulators for gamma and general-
ized gamma process for stochastic volatility. By conditioning on some auxiliary
variables, it is shown that it is possible to draw all the volatilities jointly using
simple distributions such as Poisson and Gamma. Furthermore, the unknown
parameters can be drawn after integrating out the volatilities.
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IND-US
Exchange rate Indian Rupee - US dollar, monthly average:

March 1973 - June 2013, 484 observations

BRA-US
Exchange rate Brazilian Real - US dollar, monthly average:

March 1995 - June 2013, 220 observations

JP-US
Exchange rate Japanese Yen - US dollar, daily: 6 Jan 1971 - 15

Jul 2011, 10168 observations

US-EU
Exchange rate Euro - US dollar, daily: 6 Jan 1999 - 17 May

2013, 3616 observations

UK-INFL
Quarterly In�ation based on GDP de�ator, seasonally adjusted,

1971Q1 - 2011Q4, 162 observations.

UK-UR
Harmonized Unemployment Rate: All Persons for United
Kingdom, seasonally adjusted, 1971Q1 - 2011Q4, 162

observations.

Table 2: Description of variables used in empirical analysis

IND-US BRA-US JP-US US-EU UK-INFL
LNORM 1052.3 413.5 -7734.0 13275.9 -198.7
LNORM-T 1401.3 446.2 -7563.7 13284.8 -197.7
TARG 1427.1 489.3 -8228.1 13271.3 -197.5
TARG-T 1426.9 489.6 -7914.3 13283.4 -197.6
FTARG 1446.1 526.0 -7593.9 13273.1 -196.8
FTARG-T 1445.9 525.5 -7543.1 13280.5 -197.3

Table 3: Value of Log-Likelihood at th posterior median, calculated with particle
�lter for di¤erent models and datasets.

13



The empirical exercise shows that gamma and generalized gamma models
outperform the lognormal volatility model with student-t errors specially in the
datasets that exhibit greater instability, such as the exchange rate of Brazil-US
or India-US.
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7 Appendix

Proof of the equivalence between (2) and (4)
First let us verify that integrating outmt from (4) gives a Poisson distribution

with parameter �t:Z
Pr(ht = sjk1:(t�1);h1:(t�1);m1:t)p(mtjm1:(t�1))dmt

=

Z �st
s!
ms
t

[n=2]s
[(n�1)=2]s

exp(�t)

�(�m + �m)

�(�m)�(�m)
m�m�1
t (1�mt)

�m�1dm

=

�st
s!

exp(�t)

which is the probability density function for a P (�t) and where we have used
that if mt � B(�m; �m) then E(ms

t ) =
[�m]s

[�m+�m]s
(Johnson et al. 1995, p. 217).

It can also be veri�ed that
R
p(mtjm1:(t�1)) = 1 by the following derivation:Z

p(mtjm1:(t�1))dm =
�(�m + �m)

�(�m)�(�m)

1

exp(�t)

1X
s=0

�st
s!

[n=2]s
[(n� 1)=2]s

Z
m�m+s�1
t (1�mt)

�m�1dmt

=
�(�m + �m)

�(�m)�(�m)

1

exp(�t)

1X
s=0

�st
s!

[�m + �m]s
[�m]s

�(�m + s)�(�m)

�(�m + s+ �m)

Using the following properties of the gamma function:

�(�m + �m + s) = �(�m + �m)[�m + �m]s

�(�m + s) = �(�m)[�m]s

we obtain that
R
p(mtjm1:(t�1)) = 1.

16



Proof of Proposition 1
The likelihood is:

L(Y jk) = (2�)�T=2
"
TY
t=1

(kt)
1=2

#
exp

 
�1
2

TX
t=1

r2t kt

!
r2t = (yt � xt�)2

The prior p(k; hj�) is equal to:

p(k1j�)
TY
t=2

(p(ktjht;�)p(htjkt�1;�))

= p(k1j�)
TY
t=2

0@p(ktjht;�) �
ht
t
ht!

exp(�t)

1A
The densities p(k1j�) and p(ktjht;�) are Gamma densities:

p(k1j�) =
jk1j

n�2
2

c1
exp

�
�1� e�2

2e�2 k1

�
c1 = �

�n
2

� 2e�2
1� e�2

!n=2
(10)

p(ktjht;�) =
jktj

n+2ht�2
2

ct
exp

 
� 1

2e�2t kt
!

ct = �
�n
2
+ ht

��
2e�2t�n=2+ht t = 2; :::; T

Thus, the product of the prior and the likelihood, p(�)p(k; hj�)L(Y jk), can
be written as:

(2�)�T=2
"
TY
t=1

(kt)
n+2ht�2

2
+ 1
2

#
exp

 
�1
2

TX
t=2

kt

 
1e�2t + r2t

!!
� (11)
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�
�1
2
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�
1� e�2e�2 + r2t
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t=2

0@ �
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t
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exp(�t)

1A TY
t=1

ct

!�1
p(�)

Recalling that �t = e�2tkt�1=(2e�2t ), it is clear that ktjh; Y � G((n + 1)=2 + ht +

ht+1; 2e�2t ). To �nd the conditional distribution of h given k note that ct depends
on ht and also that standard properties of the gamma function (e.g. Slater
(1966, p.3)) imply that:

�
�n
2
+ ht

�
= [n=2]ht�

�n
2

�
Thus, putting together the terms in (11) that depend on ht we get:

TY
t=2

0@ 1

ht!

1

[n=2]ht

  e�t
2e�2t
!2
ktkt�1

!ht1A
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which shows that htjk; Y � Bessel(n�22 ;e�tpktkt�1e�2t ) for t = 2:::T . The expression

for p(�2; n; �2jY; h) can be obtained by integrating (11) with respect to k using
basic properties of the Gamma function.

Proof of Proposition 2:
For the proof it will be convenient to rewrite the denominator of (7) more

compactly as a ratio of two hypergeometric coe¢ cients. For this purpose we can
use the Chu-Vandermonde identity (e.g. Slater (1966, p.2), Mathai and Saxena
(1973, p. 110), or Weisstein) which states that:

[x+ d]h
[x]h

= 2F1(�h;�d;x; 1) (12)

where 2F1() is a hypergeometric function. If d is an integer and (0 � d � h), this
function can be written as:

2F1(�h;�d;x; 1) =
dX
s=0

1

s!

[h]s[d]s

[x]s
(13)

Therefore, (7) can be rewritten as:

Pr (dt = sjht; dt+1) =
[(n� 1)=2]ht

[(n+ 1)=2 + dt+1]ht

[ht]
s

s!

[1 + dt+1]
s

[(n� 1)=2]s

Thus, the joint prior of (d = (d2; :::; dT )) given (h; k;m), denoted as �(djh; k;m);
can be written as:

2Y
t=T

p (dtjht; dt+1) =
2Y

t=T

�
[(n� 1)=2]ht

[(n+ 1)=2 + dt+1]ht

[ht]
dt

dt!

[1 + dt+1]
dt

[(n� 1)=2]dt

�
with dT+1 = 0

and we will also use the notation p(d2:T�ljdT�l+1; h; k;m) for:

p(d2:T�ljdT�l+1; h; k;m) =
2Y

t=T�l

p (dtjht; dt+1)

The prior p(k; h;mj�) is equal to:

p(k1)

TY
t=2

(p(ktjht)p(htjmt; kt�1)p(mtjkt�1))
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1CA
where p(k1) and p(ktjht) have been de�ned in (10).
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Thus, the product of the prior and the likelihood, p(k; h;m; dj�)L(Y jk), can
be written as:
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where h1 is �xed as h1 = 0. It is clear that the conditional posterior of kT jhT ;m; d
is a G((n+ 1)=2 + hT ; 2br2T ). Integrating out kT we �nd:
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Again using the properties of the gamma function (e.g. Slater (1966, p.3)),
it can be showed that:
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In order to �nd out the posterior conditional of hT , note that cT depends on hT
and so the terms that contain hT in expression (14) can be written as:
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where we have implicitly de�ned:

b�T =  �T mT br2Te�2T
!
and dT+1 = 0
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Note that (15) can be written as:�b�T�hT 1

hT !
[hT ]

dT =
�b�T�hT 1

(hT � dT )!
for hT 2 [dT ;1) (16)

From which it is clear that hT jkT�1;m; d is a SP (b�T ; dT ). Summing up ex-
pression (16) over all values of hT gives

�b�T�dT exp(b�T ). Thus, integrating out
hT from (14) we obtain:
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Noting that:

exp
�
�(�T � b�T )� = exp

 
�1
2

 e�2Te�2T �mT

 e�Te�2T
!2 br2T

!
kT�1

!

exp

 
�1
2
kT�1

 
1e�2t + r2t

!!
exp

�
�(�T � b�T )� = exp

�
� 1

2br2T�1 kT�1
�

we can see that the conditional posterior kT�1jhT�1;m; d is a G((n+1)=2+hT�1+
dT ; 2br2T�1). Thus, integrating out kT�1 from (17) we obtain:
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The terms that depend on hT�1 are:
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Again noting that from the properties of the gamma function we have that:
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So (19) can be written as:
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From which it is clear that hT�1 follows a poisson with parameter b�T�1:
b�T�1 = �T�1mT�1br2T�1

�2

Therefore, if we integrate out hT�1 from (18) we get:�
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The other results in Proposition 2 can be obtained by using similar opera-
tions to recursively integrate out (kt�2; ht�2; :::; k2; h2; k1).

Proof of Proposition 3
The conditional posterior of eT , which is given in (8), comes simply from �nd-

ing the terms that depend on eT in expression (3) in Proposition 1. Multiplying
expression (8) times the conditional prior of J (9) gives eT jJ , which is clearly a
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Beta distribution. Similarly, the conditional posterior of V jeT ; J is proportional
to expression (3) times the prior of V and times the prior of J :

p(V )

 
�(�+ �)

�(�)�(�)

!T�1 TY
t=2

��eTt��t�1 �1� eTt��+Jt�1�

Using the properties of the Beta distribution we can integrate eT from this ex-
pression to obtain the desired result.

22


