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Abstract

In this paper, I propose an econometric technique to estimate a Markov-switching
Taylor rule subject to the zero lower bound of interest rates. I show that the estima-
tion of a Markov-switching regression when the dependent variable is censored yields
estimates of the coefficients of the model and the transition probabilities that are in-
consistent, while the prevalent regime may not be identified. The incorporation of a
Tobit specification to the Markov-switching regression allows for a consistent estima-
tion of the switching coefficients and the transition probabilities, but the prevalent
regime remains unidentified. Linking the switching of the parameters of interest to the
switching of the coefficients of an auxiliary uncensored Markov-switching regression, in
addition to the Tobit specification, improves the identification of the prevalent regime.
For the estimation, I use U.S. quarterly data spanning 1960:1-2013:1. The chosen aux-
iliary Markov-switching regression is a fiscal policy rule where taxes respond to debt
and the output gap. Results show that at the end of the sample the economy is likely
in a regime of passive monetary policy and debt-stabilizing fiscal policy. Additionally,
results show that there is evidence of policy co-movements with debt-stabilizing fiscal
policy more likely accompanying active monetary policy, and vice versa.
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1 Introduction

The forward guidance provided by the Federal Open Market Committee in its most recent
statements indicates that “a highly accommodative stance of monetary policy will remain
appropriate for a considerable time after the asset purchase program ends and the economic
recovery strengthens.” In particular, the forward guidance in place sets exceptionally low
federal funds rates between 0 and 1/4 percent, defining an effective lower bound.

At least since Clarida et al. (2000), we have known that the monetary-policy regime
can change. One could infer the stance of monetary policy, as measured by the strength
of the reaction of the federal funds rate with respect to inflation deviations from target, by
estimating a Markov-switching coefficients Taylor rule and obtaining the prevalent regime.
Unfortunately, as shown in Figure 1, because of the current effective lower bound the federal
funds rate does not react to fluctuations in the inflation rate and the output gap. This
introduces an important censoring problem in the estimation of monetary-policy rules and
poses identification problems to the estimation of the prevalent regime.

Figure 1: Evolution of Interest Rate, Inflation and the Output Gap
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In this paper, I exploit monetary-fiscal policy interdependence and develop an estimation
method for an interest rate rule with Markov-switching coefficients subject to the effective
lower bound. The devised estimation technique provides the probability that, at or just after
exiting the effective lower bound, the central bank adopts a hawkish or a dovish regime, hence
providing an estimate of the current stance of monetary policy.

Since the work of Tobin (1958), it is known that the inadequate estimation of a cen-
sored regression produces inconsistent estimators. In this paper, I show that estimating a
Markov-switching regression using the Hamilton (1989) filter ignoring the censoring prob-
lem produces inconsistent estimators of the Markov-switching regression coefficients and the
transition probabilities. Moreover, I show that, even when a censored regression specification



is introduced in the estimation, the filtered probabilities fail to identify the prevalent regime
over the censored part of the sample.

There is a way to solve, at least partially, the lack of identification problem of the preva-
lent regime over the censored part of the sample. The solution involves the joint estimation
of the censored Markov-switching regression and an uncensored auxiliary Markov-switching
regression whose switching is correlated with the switching of the coefficients of the censored
equation. In particular, I show that as the correlation between the states driving the switch-
ing of the coefficients of the two regressions increases, identification of the prevalent regime
of the censored Markov-switching regression is more precise.

The present work fits in the literature of estimating Taylor rules with Markov-switching
coefficients. Bae et al. (2012), for example, estimate a forward-looking Taylor rule for the
period spanning 1956 to 2005 and identify regimes that roughly corresponded to the terms of
the Federal Reserve chairs. Murray et al. (2013) estimate a real-time forward-looking two-
state Markov-switching Taylor rule to make inference about the periods when the Taylor
principle was present. They find that the Fed consistently adhered to the Taylor principle
before 1973 and after 1984, but did not follow the Taylor principle from 1980 to 1984.

Markov-switching monetary policy regimes have also been considered within the context
of dynamic stochastic general equilibrium (DSGE) models. Eo (2009) estimates a Markov-
switching DSGE model with recurring regime changes in the monetary policy rule coefficients,
the technology coefficients, and the coefficients characterizing nominal price rigidities. In an
application to postwar U.S. data, he finds stronger support for regime switching in monetary
policy than in technology or nominal rigidities. Davig and Doh (2009) estimate a Markov-
switching New Keynesian model that allows shifts in the monetary policy reaction coefficients
and shock volatilities. Using U.S. data, they find that a more-aggressive monetary policy
regime was in place after the Volcker disinflation and before 1970 than during the Great
Inflation of the 1970s. Bianchi (2013) estimates a two-state model and finds that monetary
policy has fluctuations between a Hawk and a Dove regime, with the latter prevalent in the
1970s and during the recent crisis.

Another strand of the literature estimates the monetary policy rule along with a fiscal pol-
icy rule. For example, Davig and Leeper (2006, 2011) estimate two-state Markov-switching
monetary and fiscal policy rules to evaluate the presence of regimes of monetary or fiscal
dominance. In their specification of the Markov-switching processes, two independent states
drive the evolution of the monetary and fiscal policy rule coefficients. They find that mone-
tary and fiscal policies fluctuate between active and passive behavior. In a Markov-switching
DSGE framework, Bianchi (2012) specifies and estimates a model with monetary and fiscal
policy rules whose coefficients’ switching is driven by a single state. His estimates show that
the monetary/fiscal policy mix has evolved over time and identifies three distinct regimes.

I apply the proposed estimation technique to a two-state Markov-switching forward-
looking Taylor rule using quarterly data spanning 1960:1-2013:1. Interest rates at or below
0.25 percent are classified as censored, and the lower bound is set to that value. For the
Markov-switching uncensored auxiliary regression, I take a fiscal policy rule where taxes
respond to debt deviations from target and to the output gap.

Results imply that the estimated correlation between the switching states of the two
policy rules is 0.81. Moreover, the null hypothesis of independent switching between the
coefficients of the monetary and fiscal policy rules is rejected at conventional significance



levels. The estimated coefficients allow us to classify the monetary/fiscal policy mix into
four regimes according to the response of the interest rate to inflation and the response of
taxes to debt: (i) a regime of weak interest rate response to inflation and weak tax response
to debt, that I denominate regime F, for fiscal; (ii) a regime of weak interest rate response
to inflation and strong tax response to debt, that I denominate regime I, for indeterminate;
(iii) a regime of strong interest rate response to inflation and weak tax response to debt,
that I denominate regime F, for explosive; (iv) a regime of strong interest rate response to
inflation and strong tax response to debt, that I denominate regime M, for monetary. The
estimated ergodic regime probabilities are: 39% for regime F, 2% for regime I, 8% for regime
E, and 51% for regime M. The transition probabilities for the policy rule coefficients imply
that regime M is expected to last about 12.5 quarters, regime F, about 7.1 quarters, and
regimes [ and F, 1 quarter each.

The model’s smoothed probabilities imply that in the first quarter of 2013 the economy
was more likely in regime I, where the stance of monetary policy was accommodative while
fiscal policy was trying to stabilize debt deviations from target.

This document is structured as follows: in Section 2, I present the specification of a
Markov-switching Taylor Rule at the zero lower bound. Section 3 develops the estimation
procedure and the Monte Carlo exercise that justifies it. Results of the estimation appear
in Section 4. Section 5 puts the results in context with the historical narrative on monetary
and fiscal policy. Section 6 concludes.

2 A Markov-switching Taylor Rule at the Zero Lower
Bound

I am interested in estimating the following Markov-switching regression model of a mon-
etary policy rule with a smoothing component:

R: = psm,th—l + (1 - pSm,t) (Rsm,t + O‘gmytﬂt + O‘é,“tyt) + O-SUR,tut (1)
R; = max (R, R}) (2)
Sm,t:1727---7jm; SUR,t:1727---7J0'R7

where Ry is the underlying policy rate in period ¢, R, is the observed policy rate in period ¢,
7 is a measure of the inflation rate in period t, y; is a measure of the output gap in period t,
and u; ~ IN (0, 1) is a monetary policy shock to the policy rate. The observed interest rate
is bounded from below by R > 0.

St and SjaR,t are J,,-state and J,,-state, possibly correlated, first-order Markov switch-
ing processes, respectively. Their transition probabilities are

P (Sm,t = jm|Sm,t—1 = .];n) = p.]m.?;n (3)
P (SUR,t = jUR‘SURi—l = j;'R) - pjf’RjZ’R' (4>

Bae et al. (2012) show that Equation (1) is the empirical model of the federal funds
rate with a smoothing component assuming that the forward-looking monetary policy rule



is subject to regime changes. A result of this specification is that the inflation rate and the
output gap are correlated with the error term.

I show that, to consistently estimate this Markov-switching regression model, it is not
enough to incorporate in the estimation the censored part of the process. In particular, in-
ference about the prevalent regime over the censored period is inaccurate. The next section
specifies a system of equations with interdependent Markov-switching coefficients. Interde-
pendent switching is the key to identification of the prevalent regime of the economy over
the censored part of the sample.

3 Estimation Procedure

This section shows that estimation of the monetary policy rule as specified in Equa-
tions (1)-(4) yields biased estimates if censoring is not considered, and may be unable to
discriminate the prevalent regime over the censored part of the sample even if censoring is
incorporated. I then implement an estimation procedure that allows resolving the lack of
identification problem.

3.1 Setup

Consider the following Markov-switching regression model with a censored dependent
variable:'

yikt = ljltﬁb%t + 01,81 U1ts Slt =1, 2> ) Jla ( )
Y1 = max(yir, ¥iy), (6)
Yor = Thy 2.8y + 02,8, U2t,  Sop = 1,2, ..., Jo (7)

(8)

|:ZZ:| ~ ]N(ngl, 12) 8
J1 J1

Brsw = BipSijs  ouse = 0158154 9)
Jji=1 J1
Jo J2

Bosu = BoinSapnts 0250 = Y 025,525 (10)
Jo2=1 J2

where
. 1, ifSy=7iji=1,2,... Jui=1,2

0, otherwise,
and where yy; and yo are 1 X 1; xy; and xo are ky x 1 and ko X 1, respectively, vectors of

explanatory variables. I assume that y;; conditional on Sy, and xy; are covariance stationary.
The same holds for y,; conditional on Sy, and z5;. Following Kim (2009), to allow for non-

'For simplicity of exposition, I assume that the state that drives the switching in the conditional mean
parameters also drives the switching in the standard deviation of the shocks. I will relax this assumption to
conduct the estimation of the Markov-switching model of the federal funds rate given in specification (1)-(4).
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zero correlation between S3; and So; I introduce the following J = J; x Jo-state Markov-
switching process S;:

St:(SQt—].) Jl‘l—Slt, Sit:1,2,...,Ji,’é:1,2, (12)
where the transition probabilities are given by

P (S; = j|Si—1 = j") =P (Sit = j1, Sar = Jo|S1.0-1 = J1, S20-1 = J5)
= Pjj’ (13)

and

Jj=(j2—1)J1 + J1,
i =y = 1)+ 1,

with ijl pj;» = 1. The marginalized transition probabilities for Sj; and Sy are given by

Py = P (S = j1lS1e-1 = j1) (14)
P2,jojy, = P (Sot = Ja|S2—1 = J3) , (15)

which can be obtained using the derivation in Kim (2009).

I assume that the explanatory variables x1; and x5; are uncorrelated with the error terms
of their respective equations, uy; and ug. In case of correlation with the error terms, the
approaches in Kim (2004) or Kim (2009) can be added to the system above.

Notice that the errors of Equations (5) and (7) are uncorrelated. Hence, conditional on
Si, y1e and yo are independent. The dependence between y;; and y9; occurs only through
the dependent switching of the coefficients of both equations.

3.2 Maximum Likelihood Estimation

Let o = [yie w2, e =[x, 25]). Let §imr = 0 (21, Taz, - . Tat, Yio, Yits - - - Yip—1)
for i« = 1,2 be the sigma-algebras generated by the vectors of exogenous random variables
of Equations (5)-(7), and let §;_1 = o (z1,%2,..., %, Yo, Y1,---,Yi—1) be the sigma-algebra
generated by the vectors of all exogenous random variables. Let 0 = [0} 6, wvec(p)] be
the vector of parameters of the model, where

I
‘91 = [51’1 .. 'ﬁi,Jl 0'1,1 .. .0'17J1:| y

I
‘92 = [ﬁé,l .. 'ﬁé,Jz 021 - - .0'27J2:| y

and p is a J x J matrix of transition probabilities given in (13). For consistent and effi-
cient estimation of the model (5)-(13), I maximize the log-likelihood function, £4(6;Yr) =
In fy (Y7;0), with respect to € by applying the conventional Hamilton (1989) filter, where



Y; = {ys}._;. The filter allows obtaining fy(Y7;6) as follows:

YTa fy yt|gt 17

N,:]ﬂ

1

J
> Fus@el St = 4, Fee13 O)P(S; = jIF1-1:0),

t=1 j=1

T

where

fy|S(yt|St = 7,81 9) = fy1|5’1 (y1t|51t = j1731,t—1; el)fyg\SZ (y2t|S2t = j2,32,t—1; 92),

with

1y1t=v11]
, — @B
Toriss (ael S1e = J1, F1e-1:61) = {q) (m—m)} X

Ulvjl

1y1e>y11]
1 Y1 — 24,0
1t~1,51
L |
Ul7j1 Ul7j1

‘ 1 — ! ,
Jyol82 (Yat| Sor = J2, So,—1;02) = o (yzt 2t52’]2) ;
J2

02,5 02,52

where ®(-) and ¢(-) denote the distribution and density functions, respectively, of the stan-
dard normal distribution, and

J
P(S, = jI§i-1:0) = Y _ pjyP(Sic1 = §'|F1-1:6). (16)
j'=1
Once y; is realized at the end of time ¢, the filtered probability of S; in (16) is updated as

Ty1sWel St = 4, Fi—1; O)P(Sy = 7|Fe-1; )
fy(Yel§e-1;0)

P(S; = jI§:0) = (17)

3.3 Why Is Interdependent Switching Necessary?

In this section, I discuss the need of introducing the auxiliary Equation (7) and correlated
states Sy, and Sy, I show that if censoring is ignored, the estimates of 3, g,,, 01,5y, Dj.j, are
biased, and that inference about the prevalent regime Sy; is not feasible. When censoring
is introduced in the specification, the biases in fs,,, 015, and pj, j are corrected, but
inference about the prevalent regime remains infeasible. I finally show that when the system
(5)-(13) is estimated jointly, discrimination of the prevalent regime is possible.

To show the potential estimation problem and the features of the proposed solution, I
perform a Monte Carlo experiment where the model is specified as in (5)-(13) with J; =



J2:2,k1:k‘2:1,T:200,and

5 Jo5 i1 o _Joos =1

ST it g =2 T 005 if =27

5 _Jo iti=t o _Jooos g =1

22000 if =27 2270 0.005 if jy =2
U1,2)  ift <150

T , (19)
U(—1,0) if 151 <t < 200

Lot ~ Z/{(O, 1)7

03 02 02 01
_ 1005 0.05 0.05 0.05
P=10.05 0.05 0.05 0.05]’

06 07 07 08

corr (S, Sor) = 0.67,
yir = 0.

In the benchmark specification, censoring of y;, occurs over the final 25% of the sample.
I implement this censoring by switching xy; to a different distribution, as shown in (18). I
choose a cluster of periods where censoring occurs to illustrate the severity of the problem
at obtaining the estimates of the prevalent regime.

To perform the Monte Carlo analysis, I need to obtain estimates of By, 014, P1jij
for j; = 1,2, and the smoothed estimate of P (Sy, = j;) for ¢ = 1,2,...,200 under three
scenarios:

(i) Ignoring both censoring of y1; and joint switching between S, and Soy;.
(ii) Allowing for censoring of y;; but ignoring joint switching between Sy, and Say.
(iii) Allowing for both censoring of y;; and joint switching between Sy, and So;.

Appendices A and B obtain the likelihood functions for cases (i) and (ii), respectively. The
likelihood function for case (iii) was obtained in Section 3.2. I simulate and estimate the
model 10,000 times.

Figure 2 shows the bias in the estimates of the parameters under the three scenarios
listed above. The results show that the estimation under scenario (i) yields biased estimates
as would have been expected. In particular, the estimates of 3, ; is downward biased, while
the estimates of oy and p;1; are upward biased. The downward bias in 3;; is due to the
estimation attributing to a low slope coefficient the fact that y;; = 0 in the final 25% of the
sample. The persistent censoring implies an upward bias in p; 11, the probability of remaining
in the low-3 state. A higher standard deviation of shocks is also needed to reconcile the fact
that y1;, = 0 while 1, takes negative values. On the other hand, ;> and p; 22 do not seem to
suffer from a bias problem. The information that the estimation obtains from the uncensored
part of the sample seems enough to obtain accurate estimates of these parameters.



Figure 2: Parameter Bias in the Benchmark Case
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Estimation under scenarios (ii), which incorporates censoring, and (iii), which incorpo-
rates censoring and joint switching, yield unbiased parameter estimates, as expected. I point
out that estimation under scenario (ii) is sufficient to achieve unbiasedness. Estimation under
scenario (iii) is not necessary for unbiasedness.

I also analyze the effect of increasing the sample size and of changing the length of
censoring at the end of the sample. Figure 3 reports the changes on the biases of 3; 1, o1,
and p; 11 estimated under scenario (i). Increasing the sample size does not reduce the bias
of the estimates, suggesting that there is a problem of consistency. On the other hand, and
as expected, reducing the length of censoring over the final part of the sample reduces the
biases.

3.3.1 Discriminating the Prevalent Regime

I now investigate the ability of the estimation strategies to identify correctly the prevalent
regime. In the Monte Carlo exercise, I have set the standard deviation, oy, so that there is
an almost perfect discrimination of the states over the uncensored part of the sample. Hence,
to evaluate the capabilities of the three estimation scenarios at discriminating correctly the
prevalent regimes, I focus on the censored part of the sample only.

To measure the ability of the estimation techniques to identify the prevalent regimes, I
use the area under the Receiver Operating Characteristic (ROC) curve. The ROC curve is a
plot that assesses the performance of a binary classifier system as its discrimination threshold
is changed. The ROC curve was first developed by electrical engineers and radar engineers
during World War II for detecting enemy objects in battlefields and was soon introduced in



Figure 3: Parameters Biases in the Benchmark Case Ignoring Censoring and
Joint Switching - Effects of Sample Size and Censoring Length
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psychology to account for perceptual detection of signals (see Peterson et al., 1954; Swets,
1979). The use of ROC curves in medicine to assess diagnostic test performance has been
described by Lusted (1971). In our case, I obtain smoothed estimates of P (Sy; = 1), vary
the discrimination threshold between 0 and 1, and evaluate the ability of the smoothed
estimates of P (Sy; = 1) to classify correctly the prevalent regime, which is given by the
simulated states.

The ROC curve plots the fraction of true positives out of the total of actual positives,
called true positive rate (TPR), against the fraction of false positives, called false positive
rate (FPR), at various threshold settings. TPR is also known as Sensitivity, and FPR is
known as one minus the Specificity or true negative rate. Given a cut-off value ¢ € [0,1], a
realization of {S};}7%), and smoothed estimates of P (S;; = 1), I can tabulate a contingency
table like Table 1. Varying the cut-off value ¢ € [0, 1] allows obtaining Sensitivity values to
plot against 1-Specificity values, which is the ROC curve.

A perfectly discriminating variable would have Sensitivity and Specificity both equal to
1. If a cut-off value existed to produce such a test, then Sensitivity would be 1 for any
non-zero values of 1Specificity. The ROC curve would start at the origin (0,0), go vertically
up the y-axis to (0,1), and then horizontally across to (1,1) (see Bewick et al., 2004). On
the other hand, a completely random guess would give a point along a diagonal line (the
so-called line of no-discrimination). In that case, the discriminating variable would produce
a TPR equal to its FPR, or Sensitivity = 1-Specificity. The ROC curve would start at the
origin (0,0) and go diagonally to (1,1).

The performance of a discriminating variable can be quantified by calculating the area



Table 1: Contingency Table

State of Nature

Slt =1 Slt =2
S| PSi=1>¢q True Positive False Positive
7
e
0
i
2
T P(Su=1) <gq False Negative True Negative
[
oI}

Sensitivity =
T Lipsy=n>a)

Specificity =
T Le(sy=n<a)

200
21 1{5115:1}

200
21 1{5115:2}

under the ROC curve. An ideal discriminating variable would have an area under the ROC
curve of 1, whereas a random guess would have an area under the ROC curve of 0.5.

Figure 4 plots the ROC curves and reports the areas under the ROC curves for the
estimation of model (18) under the three scenarios mentioned above: (i) Ignoring both
censoring of yy; and joint switching between Si; and Sy; (ii) Allowing for censoring of 4
but ignoring joint switching between Sy, and Sy; (iii) Allowing for both censoring of 3;; and
joint switching between Sy; and Sy;. The figure shows that, over the censored part of the
sample, the only estimation scenario that allows for some degree of discrimination of the
prevalent regime is the one with censoring of y1; and joint switching between S7; and So;.
The areas under the ROC curves for the scenarios that do not allow for joint switching are
very close to 0.5, whereas the area under the ROC curve for the joint switching scenario is
about 0.84. This indicates that, to identify the prevalent regime over the censored part of
the sample, an auxiliary uncensored Markov-switching regression whose coefficients switch
in a correlated manner with the coefficients of the variable of interest is needed.

Figure 5 plots the ROC curves and reports the areas under the ROC curves for the effects
of changing the sample size, T, the frequency of censoring, and the correlation between Sy,
and So;. The results show that the estimation procedure that incorporates censoring and
dependent switching is not affected in its discrimination ability when the sample size increases
toT" =500 or T" = 1,000. Changing the proportion of the sample that is subject to censoring
to 10% or 40% does not change the performance of the estimation technique, either. Finally,
the results show that eliminating the correlation between Si; and Sy; annihilates the ability
of the estimation technique to identify the prevalent regime, while a perfect correlation
between the latent states implies a nearly perfect discrimination, as it would have been
expected. This exercise highlights the importance of an auxiliary regression with Markov-
switching coefficients whose state is correlated with the state of the coefficients of the censored
variable. The higher the correlation between switching states, the better the discrimination
of the prevalent regime of the coefficients of interest over the censoring period.

As a final exercise, I show that the lack of discrimination is also present when the variance
of the variable subject to censoring switches. In specification (18) of the Monte Carlo exercise,
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Figure 4: Area under the ROC Curve in the Benchmark Case
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Figure 5: Area under the ROC Curve in the Benchmark Case - Effects of
Sample Size, Censoring Frequency and Correlation between States
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Figure 6: Area under the ROC Curve in the Switching Variance Case
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I now allow the standard deviation o; to switch between regimes as a function of a latent
state that drives the switching of ;. Figure 6 shows the ROC curves for the discrimination
of the prevalent regime of o; over the censoring period for the three estimation scenarios
described before. As can be seen from the figure, discrimination of the prevalent regime
for the standard deviation of the censored variable improves when a joint estimation where
an auxiliary Markov-switching regression is included. Additional simulations (not shown
here) illustrate that the higher the correlation between the latent state driving the standard
deviation, oq, and the latent states S; or Ss, the better the discrimination of the prevalent
regime of the standard deviation.

3.3.2 Why Does Joint Switching Help Identify the Prevalent Regime over the
Censoring Period?

Under case (ii), that is, allowing for censoring but not for joint switching, I use the
Tobit-like specification for the density function fy,|s, (y1¢[S1t = j1, §1,4-1;61) that appears in
Appendix B. In this case, as shown in the previous section, the Hamilton filter is unable
to identify the prevalent regime Si; over the censoring period. The cause for the lack of
discrimination lies in the fact that

— fols (el S1e = g1, Fre—1; 00)P(S1e = 51T 1615 01)

P(She = jifS1i61) = Jor (16| 81,015 01) (19)
Y1 t— 1L

may not vary enough over the censored sample. In particular,

!/
YiL — xltﬁul)

O-lvjl

Tos (Y1e| S1e = j1, §1,-1561) = @ (

12



will show little variation over the censored sample if % is too small or too large. If
»J1

that is the case, P(S1; = j1|F1; 61) will have very little variation.
In contrast, incorporating joint switching in the estimation allows us to write the updated
probability P(S1; = 71|§:; 0), using (17), as

Ja
P(Slt = jl‘&% 9) = Z P(Slt = J1, Sor = j2|3t; 9)
Jjo=1
_ i fy\sl,sg(yt|§t—1, Slt - jla S2t - j2§ Q)P(Slt - jla S2t - j2|3t—1§9)
ot Sy(yel Se-1: 0)

_ JZ Fonts () Foats ()P(S1e = v, Soe = ali-1; 6)
et Fo(WilSi-10)
_ forisi (Ve 1,6-1, S1e = J1; 01)P(S1e = ja|Fe-1:0)
fy1 (y1t|§t—1; 9)
% f: fy2|52(y2t|32,t—1, Sor = Jo; Qz)P(Sm = j2|51t = j1,§2,t—1; 9)
jo—1 Fyaln (Yol y1e, Se-1:0)
_ fyl\sl (ylt\&,t—l, S = Ji; 91>P(Slt = jl\gt—l; 9)
fon (12| S1-150)

Jo . .
. P(Sm = j2\51t = J1, 82,4-1; 9) fy2 (y2t|32 t—1; 92)
X P (Sy = ;0 , : : )
hz::l ( 2 ]2|32t 2) P(Szt = ]2|32,t—1; 92) fyg\yl (y2t|y1t,§t—1; 9)

(20)

where the step from the next-to-last to the last equation uses the definition

_ = jo;05)P =7 _1;6
]P)(SZt =j2|32,t;92) _ fy2\52(y2t\52,t 17?%( J2; 2) .(S2t j2\52,t 1 2).
Y2 y2t|32,t—1;92)

If S3; and Sy, are uncorrelated, the last line of (20) is equal to one. In that case, inference
about Sy; obtained from (20) would be the same as inference about Sj; obtained from (19).
Hence, discrimination about the prevalent regime would be unfeasible. It is the additional
information given by the degree of interdependence between the latent states what allows a
better inference about the prevalent regime of Sy;.

4 Estimating a Markov-Switching Taylor Rule at the
Zero Lower Bound
In this section I apply the proposed estimation technique to estimate a Taylor rule with

Markov-switching coefficients including the sample period after the financial crisis, where
the federal funds rate has been at the ZLB.
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4.1 Selecting the Auxiliary Regression

To implement the estimation procedure presented in Section 3, I need an auxiliary
Markov-switching regression that is not subject to censoring and whose switching could
be correlated with the switching of the coefficients of the Taylor rule.

Gonzalez-Astudillo (2013) estimates time-varying monetary and fiscal policy rules whose
coefficients are driven by correlated latent factors and finds a non-negligible degree of interde-
pendence between the coefficients of the policy rules. This finding is related to the literature
on monetary-fiscal policy interactions initiated by Leeper (1991) and followed by Davig and
Leeper (2006) and Chung et al. (2007), among others. Along these lines; I propose a fiscal
policy rule with Markov-switching coefficients to be the auxiliary regression. I will test for
interdependence between the switching of the Taylor rule coefficients and the coefficients of
the proposed fiscal policy rule to confirm that this is an adequate choice.

4.2 Setting up the System to be Estimated

The system to be estimated in order to consistently estimate the Markov-switching coef-
ficients of the Taylor rule, as well as to make inference about the prevalent regime, is given
by

R: = pgm,th_l _I_ <1 - pgm,t) <RS””¢ + agm,tﬂ-t _I_ agm,tyt) _I_ OgaR tuf’ (I)
R, = max (R, Ry) (II)
T =P, -1+ (1 - /fs'f,t) (Tsf,t + 8, b + vgmyz) +05, U (11T)

where R, is the policy rate t, m; is the inflation rate in period ¢, y; is the output gap in
period ¢, and u?* ~ IN(0,1) is a monetary policy shock to the federal funds rate. The
observed interest rate is bounded from below by R = 0.25. In the auxiliary equation, 7 is a
measure of tax receipts net of transfers in period t, b;_; is a measure of federal government
debt in period ¢ — 1, and u] ~ IN (0, 1) is a fiscal policy shock to taxes net of transfers.

I introduce dependent switching between S, ;, Syr,, and Sy, by specifying the following
J = Jy X Jyr X Jy-state Markov-switching process S;:

St = (Sf,t - 1) JmJJR + (SUR,t - 1) Jm + Smﬂg, Si,t = 1, 2, cey Ji7 for i = f,m, O'R,
where the transition probabilities are given by:

P (St - j|5t—1 - j/) =P (Sm,t = jm7 SO'R,t = jURu Sf,t = jf|5m,t—1 = jr/n7 SJR,t—l = j;Ra Sf,t—l - j})
= Djj’,
and

j = (]f - 1)JmJ0R + (joR - 1) I +jma
3= = Vdmdor + (Jor — 1) T + jrn,
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with Z;.Izl pj; = 1. I denote as P the J x J transition probability matrix of S;. To simplify
the estimation, I assume that S, ; switches independently from S, ;, S,r;, and Sy, with a
J,+ X J,r transition probability matrix P,-.

Iset J,, = Jy = J,r = J,r = 2. This yields 58 transition probabilities to be estimated:
56 = (64 — 8) in P, and 2 = (4 — 2) in P,-. Allowing for more states for S,,, Sy, S,r, or
S,~ would imply an increasing number of transition probabilities to be estimated that could
result in an unfeasible estimation, in particular if the latent states are correlated.

In this setup, the policy rules have endogenous explanatory variables, namely the inflation
rate and the output gap, so that I implement the two-step MLE procedure proposed by Kim
(2009).

4.3 Data

I use quarterly data from 1960:1 to 2013:1. The policy rate is the federal funds rate.
Inflation is the percentage change over the last four quarters of the price level given by
the GDP price deflator. The output gap is the log difference between real GDP and the
Congressional Budget Office’s measure of potential real GDP. These variables are obtained
from FRED. Tax receipts net of transfers corresponds to the seasonally adjusted quarterly
current receipts of the federal government from which the current transfer payments have
been deducted. This variable is obtained from the NIPA Table 3.2. Debt is the market value
of privately held gross federal debt at the end of the quarter. This variable comes from the
Federal Reserve Bank of Dallas. To perform the correction for endogeneity, I use a set of
instrumental variables that includes M2 growth given by the percentage change over the last
four quarters of seasonally adjusted M2, commodity price inflation given by the percentage
change over the last four quarters of the commodity price index, and government spending
given by the federal consumption expenditures and gross investment. These variables are
obtained from FRED. Some of the variables need to be transformed before proceeding to the
estimation, namely the interest rate, tax receipts, debt, and government spending. Appendix
C describes the transformations.

4.4 Estimation Results

This section analyzes the results of the estimation by performing a set of hypothesis tests
that allows to find the most parsimonious model in terms of switching parameters. Then, it
presents a test of joint switching between the coefficients of the two policy rules, and between
the coefficients of the conditional mean and the conditional variance of the monetary policy
rule.

Before proceeding to the presentation of results, I emphasize that the estimation proposed
here incorporates a correction for endogeneity of regressors. To correct for endogeneity, I
perform two-stage constant-parameter estimations where the inflation rate and the output
gap are regressed against a set of instruments that include: four lags of the inflation rate, four
lags of the output gap, four lags of M2 growth, four lags of inflation of the commodity price
index, and four lags of the ratio of government spending to GDP. The (standardized) residuals
from these regressions appear as additional regressors with Markov-switching coefficients in
the specifications of Equations (I) and (III).
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Table 2: Likelihood Ratio Test

Log-likelihood | LR test statistic
Unrestricted Model —26.73 -

Ri =Ry, 1 =17 —29.51 5.56

Ri =Ry, 11 =1

~30.09 6.72
pit = p&, pT = p]

Null Hypotheses

sps .. 2 _ 2 _ 2 _ 2 _
Critical values: X0.95,(2) = 5.99, X0.99,(2) = 9.21, X0.95,(4) = 9.49, X0.99,(4) = 13.28

4.4.1 Finding the Most Parsimonious Specification

Results of the hypotheses tests to find the most parsimonious model in terms of switching
parameters appears in Table 2. The test statistics of the Likelihood Ratio test do not reject
policy rules whose intercepts and persistence coefficients are invariant between regimes. To
test for switching regimes on the remaining coefficients, I use the z-statistics of the difference
between the coefficients of the two regimes. The results appear in Table 4 of Appendix D. The
z-statistics reject the null hypothesis that each of the coefficients is the same between regimes.
Hence, I choose the specification with constant intercepts and persistence coefficients as the
most parsimonious.

4.4.2 Testing for Independence Between Switching States

With the most parsimonious specification found above, I test for independence between
Sm and Sy, and between S, and S,r. That is, I test for independence between the switching
of the monetary policy and the fiscal policy rule coefficients, and between the switching
of the coefficients of the conditional mean of the monetary policy rule and its variance.
To test the independence hypotheses, I use the conventional independence tests based on
2 x 2 contingency tables. Tavaré and Altham (1983) modify the conventional chi-square test
of independence based on contingency tables for the case when the data are generated by
first-order Markov sequences.

To implement the independence tests, I obtain the smoothed probabilities P (.S,,; = 1)
and P (Sy; = 1) and write 2 x 2 contingency tables varying, in the range [0.5, 1], the threshold
at which it is decided that S,,; = 1 or Sf; = 1. With each of these contingency tables, I
calculate the two tests statistics for independence between S, and Sy obtained by Tavaré
and Altham (1983) which, under the null, are distributed as a chi-square with one degree of
freedom. I follow the same procedure for testing independence between .S, and S, x.

Figure 7 shows the value of the statistics for testing the null hypothesis of independence
between S, and Sy for different thresholds of P (S,,; = 1) and P (S;; = 1) on the left hand
side, and the contour of the figure on the left for values of the statistics greater than the
critical value that corresponds to a chi-square with one degree of freedom. Both test statistics
reject the null hypothesis of independence between S, and Sy at the 5% level of significance.
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Figure 7: Independence Test S, and Sy
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where Pjmy = ]P’(Smf = jmf), and Sy 5 = (Sy — 1)Jm + Sm and jpp = (5 — 1)Jm + jm. Also,
Ny = Dotm1 LS, p1=imys}- Additionally, v = (1 = pA)(1 + pA), where p and A are the nonunit
eigenvalues of Py, and Py, the transition probability matrices of Sy, and Sy, respectively.

I conclude that S,,, and S should be specified with a joint 4 x 4 transition probability matrix
that needs to be estimated.

Figure 12 in Appendix E shows the value of the statistics for testing the null hypothesis of
independence between Sy, ; and S, , for different thresholds of PP (S,,; = 1) and IP (SO-R’t = 1)
on the left hand side, and the contour of the figure on the left for values of the statistics
greater than the critical value that corresponds to a chi-square with one degree of freedom.
Both test statistics fail to reject the null hypothesis of independence between S, and S, r
at the 5% level of significance for a vast majority of possible thresholds. Hence, S,, and S, =
can be specified with separate transition probability matrices that need to be estimated.

Since the switching of the variance of the monetary policy rule shock cannot be associated
with the switching of its conditional mean coefficients, identification of the prevalent regime
for the variance will not be feasible over the censoring period. Further exploration is needed
to find a switching variable that can be associated to the switching of the variance of the

shock.
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4.4.3 Obtaining Estimates for the Most Parsimonious Specification

The final specification re-estimates the system of Markov-switching Equations (I)-(I1I)
with intercepts and smoothing coefficients fixed between regimes and four switching states:
Sm=1,2, 87 =1,2, S;r = 1,2, and S,- = 1,2, where S,, and Sy have a joint transition
probability matrix, denoted as P,,f, that corresponds to the four-regime state S,,r = (Sy —
1)Jm + Sp, with S; = 1,2 for ¢ = m, f and J,, = 2. Results of the estimation under this
specification appear in Table 3.

Table 3: Parameter Estimates

Monetary Policy Rule Fiscal Policy Rule
Parameters j, =1 j, =2 Parameters jr=1 j;=2
R 2.52 1.61
Jm (4.85) 2 (10.46)
p: 0.89 or 0.89
gm (58.63) if (63.70)
- 0.53 1.71 b 0.05 0.13
le %% v;
gm (3.66) (3.94) is (2.78)  (4.26)
o 1.61  0.40 y 029  0.07
Im (6.70)  (=7.01) i (5.10)  (—6.98)
.jO'R - 1 jo.R - 2 jo"" — 1 jo"" = 2
R 0.24 1.22 - 0.08 0.45
(o (o
JqR (11.10) (8.40) Jom (14.18)  (5.31)
For jm = 1 and Jor =1, values in parenthesis For jy = 1 and j,= = 1, values in parenthesis
are z-statistics of the null hypothesis that the are z-statistics of the null hypothesis that the
coefficient is zero. For j,, = 2 and j_p = 2, coefficient is zero. For jy = 2 and j,r = 2,
values in parenthesis are z-statistics of the null values in parenthesis are z-statistics of the null
hypothesis that the difference between the coef- hypothesis that the difference between the co-
ficients of the two regimes is zero. efficients of the two regimes is zero.

The results show that the average underlying interest rate in absence of inflation and a
zero output gap is 2.52%. The smoothing coefficient implies that about 11% of the adjust-
ment, according to the target, occurs every quarter. The monetary policy rule coefficients
on inflation take the values 0.53 and 1.71, depending on the state. The monetary policy rule
coefficients on the output gap take the values 1.61 and 0.40, depending on the state. It is
important to notice that when the monetary authority is hawkish, less attention is given to
the output gap in comparison to the regime when the monetary authority is dovish. With
respect to volatility, the standard deviation of the interest rate takes the values 0.24% in the
low volatility regime and 1.22% in the high volatility regime.

In regard to the fiscal policy rule, the average real per capita quarterly receipts net
of transfers is $1,610 of 2005, in absence of debt and a zero output gap. The smoothing
coefficient implies that about 11% of the adjustment, according to the target, occurs every
quarter. The fiscal policy rule coefficients on debt take the values 0.05 and 0.13, depending
on the state. The fiscal policy rule coefficients on the output gap take the values 0.29
and 0.07, depending on the state. A result to emphasize is that the fiscal authority would
pay more attention to the output gap when paying less attention to debt dynamics. With
respect to volatility, the standard deviation of the real per capita quarterly tax receipts net
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of transfers takes the values $80 of 2005 in the low volatility regime and $450 of 2005 in the
high volatility regime.

Before analyzing the estimates of the transition probabilities and the smoothed prob-
abilities, I make precisions about the labels of the switching states of the model, namely
Sm, S, Ser, and S,-. The labels correspond to the identification conditions imposed in the
estimation of the Markov-switching regressions: af > af, 75 > ~%, o& > oF, and o] > of.

Leeper (1991) labels the monetary and fiscal policy regimes according to the strength
of the response of the policy instrument to the targets. Roughly speaking, a strong (weak)
response of interest rates to inflation is called an ‘Active’ (‘Passive’) monetary policy regime,
while a strong (weak) response of taxes to debt is called a ‘Passive’ (‘Active’) fiscal policy
regime. Hence, there are four possible combinations of regimes, depending on the strength
of the response of the policy instruments to their targets. I label the four possible regimes
as follows:

regime,

s (of, 1) <
e S,y =2: (af, ') & E regime,
(o, 18) & regime,
2)

mf =4 (aF, v3) < M regime,

Here F' stands for ‘fiscal’, a regime where the fiscal authority is reacting weakly to debt
deviations from target and the monetary authority is reacting weakly to inflation deviations
from target. M stands for ‘monetary’, a regime where the monetary authority is reacting
strongly to inflation deviations from target and the fiscal authority is reacting strongly to
debt deviations from target. [ stands for ‘indeterminate’, a regime where the monetary
authority is reacting weakly to inflation deviations from target and the fiscal authority is
reacting strongly to debt deviations from target. E stands for ‘explosive’, a regime where
the monetary authority is reacting strongly to inflation deviations from target and the fiscal
authority is reacting weakly to debt deviations from target. According to Leeper (1991),
regimes M and F' could deliver determinacy of the equilibrium in a local-linear version of a
dynamic stochastic general equilibrium model, depending on the values of the coefficients.
Along the same lines, in regime [ there would be indeterminacy of the equilibrium, while in
regime F, except for a particular case, there would be no equilibrium with bounded debt.
To better understand the transitional dynamics between the four regimes described above,
Figure 8 presents the probability tree implied by the estimated transition probability matrix,
along with the ergodic regime probabilities, and the implied correlation between S,,, and Sy.
The estimated transition probabilities imply that regime M is expected to last about 12.5
quarters, regime F, about 7.1 quarters, and regimes [ and F, 1 quarter each. The ergodic
probability of regime M is about 51%, while the ergodic probability of regime F' is about
39%. Taken together, the ergodic probabilities of regimes I and E add to about 10%. The
probability tree shows that if the economy starts in regime M, the only possibilities would
be to stay in regime M with probability 92%, or to move to regime I with probability 8%.
If the economy moves to regime I, the only possibilities would be to move to regime E with
probability 27%, or to move to regime F' with probability 73%. If the economy moves to
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Figure 8: Estimated Transition Probabilities, Ergodic Probabilities and Cor-
relation between States
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regime FE, the only possibility is to then move to regime M. If the economy moves to regime
F, it can stay in regime F with probability 86%, it can move to regime [ with probability
9%, or it can move to regime M with probability 5%. Notice that the results rule out the
possibility of moving from regime M to F' directly. Finally, the implied correlation between
the state driving the switching of the monetary policy rule coefficients and the state driving
the switching of the fiscal policy rule coefficients is 0.81.

Using the smoothing algorithm of Kim (1994), I obtain the smoothed probabilities for
each of the four states. The evolutions of the smoothed probabilities appear in Figure 9. The
results show a high complementarity between regimes M and F. According to the smoothed
probabilities, the regime M was more likely in place during the 1960s, the 1980s, the second
half of the 1990s, and a short period between 2005 and 2007. On the other hand, regime
F was more likely in place during a large portion of the 1970s, the first half of the 1990s, a
short period between 2003 and 2005, and a period between 2008 and the end of the sample.
With respect to regimes I and F, there are short periods in the first half of the 1980s and
the end of the sample for the former, and at the beginning of the 1980s for the latter. I will
put these results in context with the narrative of monetary-fiscal policymaking in the next
section.

In regard to the smoothed probabilities for interest rate and tax volatilities, Figure 10
plots the evolution of these probabilities along with showing the transition probability ma-
trices. The transition probability matrix for interest rate volatility indicates that the low
volatility regime is expected to last about 17 quarters, while the high volatility regime, about
9 quarters. On the other hand, the transition probability matrix for taxes indicates that the
low volatility regime is expected to last about 14 quarters, while the high volatility regime,
about 2 quarters. The smoothed probability for the high volatility regime of interest rates
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Figure 10: Smoothed Probabilities - Volatility Regimes
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indicates that highly volatile interest rates were in place between around 1965 and 1975, the
first half of and the end of the 1980s, a few years during the first half of the 2000s, and
the 2008-2009 years. One has to recall, however, that identification of the volatility regime
over the censored part of the sample is not feasible, given that I have not been able to find
dependency between the switching of its state and another switching state of the system.
On the other hand, the smoothed probability for the high volatility regime of taxes net of
transfers shows a few spikes. The estimates indicate that two short high volatility regimes
were likely to be present in the 1970s, a couple more in the 1980s, one at the beginning of
the 1990s, at least three in the first half of the 2000s, and a final one during the year 2009.
I will put these results in context with the narrative of monetary-fiscal policymaking in the
next section.

Finally, Figure 11 shows the evolution of realized and predicted interest rates. The model
performs reasonably well to predict the interest rate. In particular, at the end of the sample,
the underlying interest rate is below zero and increases gradually.

Figure 11: Observed and Predicted Interest Rate
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5 Narrative of the Results

This section puts the results from Figures 9 and 10 in context with the historical narrative
on monetary and fiscal policy.

The good conduct of monetary policy dominated the policy mix during the 1960s. Hetzel
(2008) compares Fed Chairman William Martin to Fed Chairmen Paul Volcker and Alan
Greenspan in that Martin believed that raising short-term interest rates in an expansion was
a way to preempt inflation. Despite the Tax Reduction Act of 1964 that cut income tax
rates across the board by approximately 20%, fiscal policy remained supporting monetary
policy during the 1960s. A fiscal regime starts to take place during the 1970s, possibly
due to the expansionary tax reforms of 1971, 1975 and 1976. Hetzel (2008) emphasizes the
weak reaction of interest rates to inflation during the 1970s due to the focus of the central
bank to promote employment and the belief that inflation was a nonmonetary phenomenon.
According to Hetzel, the 1980s saw the commitment of the Federal Reserve to money targets
allowing the FOMC to raise interest rates by whatever extent necessary to lower inflation.
In general, a monetary regime was in place during this decade, except for a couple of very
short fiscal regimes due, most likely, to the expansionary tax reforms of 1981 and 1986. After
tightening monetary policy at the end of the 1980s to counteract concerns about inflation,
the results show the prevalence of a fiscal regime at the beginning of the 1990s due, possibly,
to the combination of policies in reaction to the early 1990s recession. The “covert inflation
targeting” of the 1990s (see Mankiw, 2001) and the deficit reduction act of 1993 make a
monetary regime more likely during the second half of this decade. The rapid decline in
interest rates during the first half of the 2000s and the expansionary tax reforms during
that period put the economy, most likely, in a fiscal regime. A monetary regime starts to
take place, most likely, after 2005 to avoid inflation pressures and the fact that economic
activity was boosting tax revenues. This monetary regime lasts until the second half of 2007
when the central bank adopts a more dovish regime due to recessionary concerns. Once the
recession hit in 2008, a fiscal regime is much more likely to have taken place. The budget
sequestration and the recovery of tax revenues puts, most likely, a regime of debt-stabilizing
fiscal policy and passive monetary policy at the end of the sample.

With respect to volatility, interest rates experienced, most likely, a long period of high
interest rate volatility between 1970 and the first half of the 1980s. Then, interest rate
volatility decreases except for the stock market crashes of 1989 (Black Monday) and 2000
(Dot-com Bubble). Finally, volatility increases during the recent financial crisis and has,
eventually, declined. On the other hand, taxes net of transfers experience spikes in volatility
that coincide with some of the tax reforms that we listed in the previous paragraph, and are
of very short durations. In particular, there are spikes that coincide with the tax reforms
of the 1970s, the 1980s, the deficit reduction act of 1993, the numerous tax reforms of the
2000s, and the recovery act of 2009.

6 Concluding Remarks

This paper devised an estimation technique for a Markov-switching Taylor rule at the zero
lower bound. The estimation method allows to obtain consistent estimates of the switching
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coefficients, the transition probabilities, and, most importantly, identify the prevalent regime
of monetary policy. Results show that monetary and fiscal authorities switch between policy
regimes in a correlated way and that the policy regime in the first quarter of 2013 leaned
towards a regime of passive monetary policy and debt-stabilizing fiscal policy.

The results of the paper suggest that, in modeling monetary policy at the zero lower
bound, it is necessary to endow agents with information from fiscal policymaking so that
they can draw reasonable inferences on the monetary policy regime. Inferring the monetary-
fiscal policy regime right after the lift-off date for the federal funds rate has implications on
inflation expectations, as pointed out by Melosi and Bianchi (2013).

Future research goes along the lines of incorporating interdependent monetary and fiscal
policy switching in Markov-switching DSGE models to explore the consequences of inter-
dependent switching on the determinacy conditions of the model. Additionally, another
possibility is to endow agents that have imperfect information about the prevalent mone-
tary regime at the zero lower bound with a fiscal policy rule to evaluate the implications of
forward guidance.
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Appendix

A Estimation Ignoring Censoring and Joint Switching

Here the estimation consists of maximizing the log-likelihood function £y, (61;Yir) =
In gy, (Yi1; 61), with respect to 6; by applying the Hamilton filter. The filter allows obtaining
gy, (Yir; 61) as follows:

T
g (Yir: 01) = [T 9 (0111 601)
t=1

T J
= H Z Gy11S1 (ylt‘Slt = J1,81,¢-1; 91>P(Slt = jl\&,t—l; 91)7
t=1 j1=1
where ) 5
. — 21015
Gyr1s1 (Yl S = g1, Fre1;61) = — (y” — ) : (21)
1,51 O1,51
and
J
P(S1, = j1|31,t—1§ th) = ijlj{P<SLt—1 = ji|31,t—1; 01). (22)

ji=1
Once yy, is realized at the end of time ¢, the filtered probability of Sy, in (22) is updated as
_ 9ys (y1¢| S1e = Ji, F1.e-1301)P(S1e = ju[S1,0-1;01)

P51 = 1§15 61) = Gy (Y1¢|8 1,015 61) .
Y1 ,0—1

To obtain the smoothed probabilities P (Sy;|§1; 61) of the prevalent regime Sy I use the
smoothing algorithm in Kim (1994).

B Estimation Ignoring Joint Switching

Here the estimation consists of maximizing the log-likelihood function £y, (61;Y17) =
In fy, (Yi7; 61), with respect to 6; by applying the Hamilton filter. The filter allows obtaining
fy:(Yir; 61) as in Appendix A, where I replace gy,|s, (y1¢|S1¢ = J1,81,6-1; 01) in (21) with:

1{y1t=y11]
Jos: (e S1e = J1, S1,0-1501) = {‘I) (ma—ltﬁlh)}
17j1

1
% [ 1 ¢ <y1t —:L'lltﬂle)] [y1t>y1L].

Ulmjl Ulmjl

C Data Transformation

The transformation of the data is as follows:
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o R;: It is the quarterly federal funds rate until 2008:3. Starting 2008:4, the rate is fixed
at 0.25%.

e 7;: There are two choices for this variable:

— The real per capita tax receipts net of transfers. The GDP deflator is used to
deflate the series to (thousand) dollars of 2005, and the total population is used
to transform the series to per capita terms.

— The ratio of tax receipts net of transfers to GDP.

e b;_1: There are two choices for this variable, which correspond with the two choices of
the tax series above:

— The average over the last four quarters of the real per capita market value of
privately held gross federal debt. The GDP deflator is used to deflate the series
to dollars of 2005, and the total population is used to transform the series to per
capita terms.

— The average over the last four quarters of the ratio of the market value of privately
held gross federal debt to GDP.

e Among the instrumental variables, government spending is transformed to the ratio
over GDP.

D Estimation with Correlated S,, and S r

Estimates of the specification where S,, and S,r are correlated appear in Table 4.
Table 4: Parameter Estimates

Monetary Policy Rule Fiscal Policy Rule

Parameters 7, =1 j,=2 Parameters j;=1 j;=2
2.59 1.64
R; T;
(5.08) ! (11.30)
p 0.89 p 0.89
m (63.51) I (68.91)
. 053 173 , 004 012
aT o1
Jm (3.62) (3.62) If (2.48) (5.19)
y 171 0.40 . 025  0.07
[’ . Y;
dm (7.38)  (—8.41) i (5.69)  (—6.20)
Jor =1 Jor=2 Jor =1 Jor =2
B 025 121 B 008 045
g, i
JoR (11.51) (8.71) JoT (14.12) (5.28)
For jm = 1 and j_pr = 1, values in parenthesis For jy = 1 and j,v = 1, values in parenthesis
are z-statistics of the null hypothesis that the are z-statistics of the null hypothesis that the
coefficient is zero. For j,;,, = 2 and ng = 2, coefficient is zero. For j; = 2 and j,r = 2,

the values in parenthesis are z-statistics of the
null hypothesis that the difference between the
coefficient of the two regimes is zero.

the values in parenthesis are z-statistics of the
null hypothesis that the difference between the
coefficient of the two regimes is zero.
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E Results of the Independence Test between S,, and
Sop

Figure 12: Independence Test S,, and S,,
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Notes: The tests statistics are defined as:

2
nin 1 1 1 1
X2 {m(ﬁ)} /(+++)
n3nz npi np2 nps np4

n (n1n4/n2 — n2n3/n2)2
n=%(n1 +n2) (n1 + n3) (n2 + n4) (nz + na)’

Cn =

where Pj, r = P(S,,or = Jmer), and S, r = (Syr —1)Jm +Sm and j,,,r = (Jor —1)Jm + Jjm.
Also,nj =37 1g =i r}" Additionally, v = (1 — pA)(1 + pX), where p and A are the

nonunit eigenvalues of Py, and P_r, the transition probability matrices of S, and S_r, respectively.
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