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Abstract

In some two-sided markets (2SMs), such as eBay, a user may sometimes buy and
sometimes sell. We provide two models for such 2SMs where a participant can appear
on both sides, which we call �mixed two-sided markets�. In the general model, we show
when the platform can price discriminate based on consumers�volume of transactions
on each side, the pricing problem is isomorphic to a two-product non-linear pricing
problem in a standard �one-sided�market, where the impact of �two-sidedness�only
manifests as an upper bound imposed on a consumer�s choice set. The basic model
focuses on mixed bundling of access to two sides. We show the platform has an
incentive to bundle when, without bundling, the demand for each side is on average
no more than twice more elastic than the demand for the bundle of two sides. This
condition restricts the behavior of four standard price elasticities of demand, and
exhibits a �teeterboard�pattern: If the ratio between the price elasticity of demand
for the bundle and that for one side is larger, the constraint on the corresponding ratio
relevant to the opposite side can be more lax. We also show the incentive to bundle two
symmetric sides can be expressed as a de�nitive threshold on the �degree of mixedness�
of the market without bundling. We analyze properties of the optimal platform pricing
strategy, which show that when the platform earns a positive economic value (price-
cost markup adjusted upwards by network bene�ts) from one side, the optimal value-
to-price ratio on this side will be larger than the inverse of the price elasticity of
demand for this side, if and only if the economic value earned on the opposite side does
not exceed a threshold. This result starkly contrasts the Lerner formula that applies
in non-mixed 2SMs. The higher ratio is necessary to compensate for the additional
discounts o¤ered to the consumers who join both sides, whenever the economic value
earned from the opposite side alone is insu¢ cient. We also show that the platform�s
equilibrium pro�t is strictly increasing in the strength of network e¤ects.
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1 Introduction

Existing theories of two-sided markets in the literature have mostly focused on classic
examples such as credit card, video game and media, where there are good reasons to
model the two sides as two distinct groups of participants - card holders versus merchants,
game players versus developers, and media viewers versus advertisers - because there is
little possibility of overlap between these groups (see, for instance, Caillaud and Jullien
(2003), Armstrong (2006) and Rochet and Tirole (2003 and 2006)).

However, in many other, perhaps less classic two-sided markets, one participant may
act on both sides of the market. Consider for instance the consumer-to-consumer online
marketplace mediated by eBay, which clearly exhibits �two-sidedness�as buyers (respec-
tively, sellers) value eBay more when they expect to have access to a larger group of sellers
(respectively, buyers) on the platform.1 More importantly, an eBay user can quite freely
buy and sell as he or she pleases, and therefore there exists an overlap between the buyer
side and seller side of the market. In fact, the Chinese counterpart of eBay, Taobao.com,
has around 1.1% of some 180 million registered users (as of Oct. 2010) who are active in
both buying and selling (see Fan, Ju and Xiao(2013)). In telecommunications markets,
if we consider the networks as platforms connecting call makers or message senders to
receivers, there clearly exist network externalities across the two groups, which indicates
two-sidedness. But many (if not most) subscribers both make and receive phone calls, and
many both send and receive messages. Therefore the two groups have a conceivably large
overlap. Other similar examples include many kinds of �nancial intermediation where
consumers can both buy and sell, or both borrow and lend (such as securities brokerage
and social lending), software that allows users to both create and view �les in certain
formats (such as text-processing software and computer-aided design software), informa-
tion exchange platforms that allow users to both post (or send) and view messages (such
as bulletin boards, online forums, social networking websites and user-generated content
platforms), and solar/wind power grids connecting home electric systems that can both
draw power from and feed power to the grid.

When there exists a considerably large proportion of participants who act on both
sides, one may wonder whether this would change the dynamics between the platform and
the two sides, and in particular, whether and how the platform should develop strategies
towards such �special� participants. Such problems cannot be properly analyzed using
the existing models in the literature, as in these models any such participant would be
arti�cially split into two participants - each on one side of the market only - who make
decisions independently of each other. As Armstrong (2006) noted in his discussion of his
Proposition 1, �for the analysis to apply accurately (to software markets), though, there
need to be two disjoint groups of agents: those who wish to read �les and those who wish
to create �les. It does not readily apply when most people wish to perform both tasks.�

In this paper, we provide two models (one basic and the other more general) for two-
sided markets where a consumer can appear on di¤erent sides of the market, which we call
mixed two-sided markets. If no one can appear on both sides, we call the two-sided
market standard. Figure 1 illustrates the di¤erence between these two kinds of markets.

1This analysis follows the de�nition of two-sidedness from an �indirect network externality�perspective,
as in Armstrong (2006) and Rysman (2009). Alternatively, one could use the de�nition based on price
structures by Rochet and Tirole (2006): If eBay were to charge a �xed total price to the seller and buyer
in each transaction, how this price is divided between the two parties will most certainly a¤ect their total
volume of transactions.
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We show how �mixedness� matters to the platform, present properties of the optimal
pricing strategy, and provide conditions on when the platform would �nd it pro�table to
use strategies that exploit the mixed nature of the market.

Figure 1: Standard and Mixed Two-Sided Markets

A platform essentially provides two services to consumers �the access to side 1 (e.g.
sellers) on the platform, and the access to side 2 (e.g. buyers) on the platform. In a mixed
two-sided market, all consumers potentially have the choice to use either one service only,
to use both, or to use neither. Therefore the pricing problem that the platform is faced
with is multiproduct by nature, which means that the platform can employ strategies that
are irrelevant in standard two-sided markets. Table 1 shows the choice of pricing strategies
by some real-life mixed two-sided platforms.

Table1. Mixed Two-Sided Platforms and Their Pricing Strategies

Platform eBay/Taobao Telecom.
Network

Stock
Exchange

Solar/Wind
Power Grid

Acrobat
Software

Zopa.com

Side 1 Seller Caller/Sender Seller Feeder Reader Lender
Side 2 Buyer Receiver Buyer User Writer Borrower
Strategy
Choice

2­Part Tariff/
Non­linear Pr.

2­Part Tariff/
Non­linear Pr.

2­Part Tariff 2­Part Tariff Separate
Lump­sum

Separate
2­Part Tariff

Access to 1 ­ One
common fee

One
common fee

One
common fee

Fee Fee
Access to 2 ­/Fee ­ Fee
Usage on 1 ­/Fee Fee Fee Credit ­ Fee
Usage on 2 ­ ­/Fee Fee Fee ­ Fee

As di¤erent industries and markets have di¤erent business models and/or information
availability, not all pricing strategies are feasible in all cases. For instance, Adobe o¤ers
its Acrobat Reader software for free, which allows users to read PDF �les and hence
provides them with an opportunity to interact with people who create these �les (i.e.
�writers�). On the other hand, the full Acrobat package is sold at a lump-sum price,
which can also create/edit PDF �les and hence gives writers an opportunity to interact
with readers. In either version of the software, there are no additional fees for usage.
Zopa.com, a social lending platform facilitating lending and borrowing among individuals,
o¤ers di¤erent accounts for lenders and borrowers, which involve completely di¤erent fees,
including membership fees and transaction fees. In telecommunications markets, however,
most networks use two-part tari¤s where subscribers pay a monthly �xed fee for access to
both callers and receivers on the network, plus variable usage fees dependent on the time
spent making and/or answering calls, and sometimes discounts are o¤ered on the piece
rates of usage to heavy users (e.g. through pre-paid bundles).
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We develop two models for di¤erent contexts. In the basic model, we only consider
mixed bundling strategies with three prices: one for the access to each side alone, and
the third for their bundle (i.e. the access to both sides together). It applies to platforms
that are somehow restricted to using lump-sum charges instead of usage-dependent fees,
perhaps due to di¢ culty in monitoring usage (e.g. Acrobat), or when all consumers have
the same usage even though two-part tari¤s are used2. We also extend the basic model to
a general model that allows the platform to use multiproduct non-linear pricing, where the
total charge to any consumer is contingent on her individual choice of usage (e.g. number
of transactions made) on both sides of the market, which applies when the platform can
price based on such usage records (e.g. telecommunications networks).

In the basic model for mixed bundling (section 2), each consumer simply chooses which
side(s) to join (if any). We �rst study the platform�s incentive to bundle (i.e. when mixed
bundling will strictly dominate separate pricing or no bundling3), then analyze the optimal
way to bundle (i.e. what properties the optimal strategy must have). Our key �ndings
include:

1. The incentive to bundle depends on the sum of two elasticity ratios without bundling,
where each ratio is between the standard price elasticity of demand for the bundle
of two sides and that for one side, with respect to the price for the relevant side.
In particular, mixed bundling with a bundle discount (respectively, premium when
feasible) is pro�table if, without bundling, the demand for each side is on average no
more than twice more elastic (respectively, on average at least twice more elastic)
than the demand for the bundle of two sides.

2. When the two sides are symmetric, the incentive to bundle can be expressed as a
de�nitive threshold on the degree of mixedness of the market - the proportion of
consumers who join both sides - under optimal separate pricing, where the threshold
depends on the ratio between price elasticity of demand for one side (either alone or
as part of the bundle) and that for the side alone. A bundle discount (respectively,
premium when feasible) is pro�table if the degree of mixedness is larger (respectively,
smaller) than the threshold.

3. The necessary conditions for the optimal mixed bundling strategy put constraints
on the economic value that the platform earns from each side. This value is equal
to the price-cost markup adjusted upwards by the total external bene�ts created by
each member of this side for the opposite side through network e¤ects. The optimal
ratio between economic value and price on each side no longer follows the familiar
Lerner formula that applies in standard two-sided markets. When the platform
earns a positive economic value from one side, the optimal value-to-price ratio may
be larger or smaller than the inverse of the price elasticity of demand for the relevant

2The two-part tari¤s studied by Rochet and Tirole (2006) is an example of the latter case, where they
assume everyone�s volume of transactions is �xed to be either the size of the opposite side, or a given
increasing function of that size, instead of chosen according to individual utility maximization. For a
monopoly platform in a standard two-sided market, their two-part tari¤ is equivalent to two lump-sum
prices, each for one side. The mixed bundling strategy we study is therefore a multiproduct generalization
of their two-part tari¤s. More discussion and proof of the equivalence between mixed bundling and two-part
tari¤s with �xed usage is provided in section 3.5.1.

3The separate pricing we use as benchmark for comparison is also the optimal strategy in standard
two-sided markets in Armstrong (2006).
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side, contingent on how well the platform does on the opposite side. In particular,
this ratio will be larger than suggested by the Lerner formula, if and only if the
economic value earned on the opposite side does not exceed a threshold, which in
turn depends on the additional discounts o¤ered to consumers joining both sides.
The higher value-to-price ratio is necessary exactly to compensate for the additional
discounts, whenever the economic value from the opposite side alone is insu¢ cient.

4. The platform�s equilibrium pro�t is strictly increasing in the strength of network
e¤ects in both directions across the two sides, at an equal rate that is proportional
to the equilibrium size of each side.

In the general model for non-linear pricing (section 3), the platform can price based
on a consumer�s usage on both sides (if any). In formulating the problem, we show that
we can either use the proportion of members on each side with whom a consumer chooses
to interact to represent usage, or equivalently use the number of members chosen on
each side. The former method yields an original representation of the problem where the
parameters of network e¤ects and the endogenously determined market sizes are entangled
multiplicatively in a consumer�s utility function, as is typical in two-sided market models;
whereas the latter method renders a much cleaner dual representation where the impact
of �two-sidedness�on a consumer�s choice only manifests as an upper bound imposed on
her choice set, which restricts the number of chosen members of each side to be no larger
than the total size of the relevant side. Although the original representation appears quite
intractable, the dual representation is isomorphic to a rather standard two-product non-
linear pricing problem in a �one-sided�market as in Wilson (1993), except only for the
restricted consumer choice set. Therefore we show that:

5. The general model has a solution if and only if the one-sided pricing problem with
a relaxed choice set in the dual representation has a solution, where the consumers�
induced choice of usage does not exceed the size of the relevant side. Whenever
this condition holds, the known solution methods in the existing non-linear pricing
literature for one-sided markets are directly applicable in solving the general model.

Our models generalize the canonical model of standard two-sided markets by Arm-
strong (2006), through incorporating features from models of bundling (Long (1984) and
Armstrong (2013)) and multiproduct pricing (Wilson (1993)). Consumers are assumed
to have heterogeneous types in two dimensions - one for each market side - drawn from
a continuous set. Their utility from participating on either side directly increases in the
size of the opposite side, which is in turn endogenously determined as the proportion of
consumers participating there. The utilities obtained from two sides are additive for each
consumer. The platform chooses the best among all feasible pricing strategies in each
model to maximize pro�ts. We follow Armstrong (2006) to model demand as functions
of utility provided by the platform, unlike in Rochet and Tirole (2006) where demand
depends on prices directly. The former approach allows for a much more transparent rep-
resentation of the demand relationship, crucial for incorporating the multiproduct feature
of mixed two-sided markets.

Among the existing works on bundling of two products in �one-sided�markets, Long
(1984) and Armstrong (2013) are the strand that uses standard aggregate demand func-
tions and links the incentive to bundle to elasticities of demand. Another strand focuses
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on the properties of the joint distribution of consumers�valuations for two products (es-
pecially their correlation or stochastic dependence), which includes Adams and Yellen
(1976), Schmalensee (1984), McAfee, McMillan and Whinston (1989), and Chen and Ri-
ordan (2013) (who use copulas instead of distributions, to be more precise), among others.
We follow the �rst strand, and our model is closer to Long (1984) as we focus on a monopoly
platform and consumers with additive valuations for two sides. Armstrong (2013) consid-
ers much broader situations where there can be separate providers of products as well as
substitutability or complementarity in consumption of the bundle. They both �nd that
a bundle discount (respectively, premium) increases pro�t upon optimal separate pricing
(without bundling) if the demand for either product is less (respectively, more) elastic
than that for the bundle of two products, where the elasticities are de�ned with respect
to �simultaneous and equal percentage increases in price-cost markups of both products�.
This rather unusual de�nition of elasticity of demand is necessary in Armstrong (2013)
particularly because the non-additive valuations he studied do not allow for a simpler
representation of the �rst-order conditions for the optimal separate prices.4

As we focus on the case with additivity, we are able to segregate the price e¤ects
on di¤erent sides in the relevant conditions, and can therefore explain precisely how the
incentive to bundle is determined by the standard price elasticities of demand for each
side and those for their bundle. Our result in point 1 presented previously shows a new
�teeterboard� pattern in the constraint on two sides: What matters is only the average
behavior of two ratios between elasticities, each relevant to one side; if the constraint on
one of them is tighter, that on the other can be more lax. For instance, if under optimal
separate pricing the demand for side 1 is four-thirds more elastic than the demand for the
bundle of two sides (with respect to the price for side 1), then a bundle discount will be
pro�table as long as the demand for side 2 is no more than four times more elastic than
the demand for the bundle (with respect to the price for side 2). It is worth noting that
this new pattern does not really rely on two-sidedness, and should be robust in a one-
sided context with additive valuations. Our results in points 1 and 2 presented previously
are perhaps also easier to test empirically than the existing results, as data for standard
elasticities and for the degree of mixedness should potentially be easier to obtain.

Our result in the previous point 3 illustrates the special characteristics of the optimal
mixed bundling strategy in mixed two-sided markets. Manelli and Vincent (2006) discuss
optimal mixed bundling in one-sided markets with two or more products. Whereas they
present results as constraints on the distribution of consumers�valuations that are not
directly comparable to our result in terms of elasticities, one sure di¤erence is that, in
the �rst-order conditions, the relevant optimal price-cost markup from each consumer in
a one-sided market needs to be adjusted upwards by the positive external bene�ts that
a consumer in a mixed two-sided market creates for the opposite side, and what really
matters is the resulting net economic value. Armstrong (2006) actually shows that the
optimal (separate) pricing strategy in standard two-sided markets satis�es a modi�ed
Lerner formula involving exactly such adjusted markups. In stark contrast, our result in
point 3 in turn shows that this modi�ed Lerner formula no longer holds when the two-sided
market is mixed.

4Long (1984) also needed to de�ne elasticity this way as the assumption of additive valuations (which
he called independent component demand) that he claimed to have kept from the Stigler and Adams-
Yellen models is not really invoked in his analysis. Otherwise he could also have used the standard price
elasticities of demand.
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Our general model proposes one way to formulate the general non-linear pricing prob-
lem of a mixed two-sided platform within the framework of the familiar one-sided market
problem by Wilson (1993), and the result in the previous point 5 provides a necessary and
su¢ cient condition for the equivalence between the solutions to the two problems.

2 A Basic Model for Mixed Bundling

A monopolist platform facilitates interaction between two market sides: i = 1; 2. There is
a continuum of consumers who may choose to join either one side, both sides, or neither.
If a consumer joins side i only, we assume she obtains a total surplus of

ui + ti

where ui is a common value that the platform provides to all side-i members, and ti
represents some idiosyncratic value this consumer derives from side i. If a consumer joins
both sides, her total surplus is

u1 + t1 + u2 + t2 + uX (1)

where uX is the extra value (or disutility if negative) provided by the platform in addition
to u1 and u2. Therefore values obtained from two sides are additive for all consumers. We
use u � (u1; u2; uX) 2 R3 to denote the common values, and t � (t1; t2) 2 R2 to denote
the idiosyncratic values, which is also called a consumer�s type. u and t may take positive
or negative values. u is chosen by the platform. t is exogenously given, and we assume
it is distributed on some subset T of R2, which satis�es the usual regularity assumption
presented in section 3.1.

Not joining either side will yield a total surplus of zero.

2.1 Mixed bundling

If the platform sets uX 6= 0, we say it is using mixed bundling. It means that the platform
is intentionally discriminating among the membership choices, and hence a consumer�s
decision regarding joining one side is linked to that regarding the other side. In this part
we focus on a simple mixed bundling strategy as discussed by Armstrong (2013). In section
3.5.1 of the general model, we show this kind of mixed bundling strategy, as well as the
two-part tari¤s in the real life examples we discuss in section 1, actually can both achieve
all feasible pricing strategies in the basic model. Therefore focusing on the former here is
without loss of generality, and all the results in section 2 also hold when the platform uses
a two-part tari¤.

Consider the platform using a mixed bundling strategy p � (p1; p2; pX) 2 R3, where
pi is the fee (or subsidy if negative) charged to a consumer who joins side i, and pX is
the �bundle� discount (or premium if negative) o¤ered to a consumer who joins both
sides (who then pays a total of p1 + p2 � pX). Enforceability of such a tari¤ requires the
platform�s ability to monitor any consumer�s membership status, among possibly other
things.

The two-sidedness of the market is re�ected in the speci�cation of u. Our treatment
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here mostly follows Armstrong (2006). In particular,

Side 1 only : u1 � �1N2 � p1 (2a)

Side 2 only : u2 � �2N1 � p2 (2b)

Both Sides : ub � u1 + u2 + uX = (�1N2 + �2N1)� (p1 + p2 � pX) (2c)

which imply uX = pX :
As in standard two-sided markets, consumers on either side bene�t from their interac-

tion with members on the opposite side. For all side-i members, each side-j (6= i) member
creates a value of �i, whose magnitude represents the strength of network e¤ects. The
total number of consumers who choose to join side i is denoted Ni. Therefore, a consumer
who joins only side i obtains a net value of ui = �iNj � pi from the platform. As the
consumers who join both sides get a discount pX , the extra surplus uX they get in addition
to u1 + u2 is exactly equal to pX .

Note however that we allow for negative prices here. Negative prices may emerge in
equilibrium because it may be worthwhile for the platform to subsidize participation by
some consumers in order to take advantage of the high values created through network
e¤ects (as represented by the term �iNj in (2)). A negative discount (i.e. a premium) is
also possible should it be feasible and the platform �nd it pro�table.

Given u = (u1; u2; uX) provided by the platform, a consumer chooses the largest
amongst the following four options:

fu1 + t1; u2 + t2; u1 + t1 + u2 + t2 + uX ; 0g:

We model this discrete choice problem following Armstrong (2013). We de�ne the
following demand functions5:

Side 1 only : D1(u) � Pr[u1 + t1 � maxfu2 + t2; u1 + t1 + u2 + t2 + uX ; 0g] (3a)
Side 2 only : D2(u) � Pr[u2 + t2 � maxfu1 + t1; u1 + t1 + u2 + t2 + uX ; 0g] (3b)
Both sides : Db(u) � Pr[u1 + t1 + u2 + t2 + uX � maxfu1 + t1; u2 + t2; 0g] (3c)
All side-i : Ni(u) � Di(u) +Db(u) (3d)

All members : N(u) � D1(u) +D2(u) +Db(u) (3e)

The maximized aggregate consumer surplus is then

V (u) � Et[maxfu1 + t1; u2 + t2; u1 + t1 + u2 + t2 + uX ; 0g] (4)

5 Instead of representing demands as functions of prices p, we have chosen to de�ne them as functions of
the common values u, which allows for a much more transparent representation of the demand relationship.
The cost of transparency, however, is that it also hides some important elements of the model, such as the
parameters for network e¤ects, �1 and �2, which are not directly shown in the demand functions. For the
same reason, features of two-sidedness are not directly shown in some parts of the following analysis.
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By the envelope theorem, we have

@V

@u1
= N1 (5a)

@V

@u2
= N2 (5b)

@V

@uX
= Db (5c)

In order to lighten notation, we use superscripts to denote derivatives. In particular,
for i 2 f1; 2; bg and j 2 f1; 2; Xg, let6

N j
i (u) � @

@uj
Ni(u), and

Dji (u) � @

@uj
Di(u):

By the symmetry of 2nd-order derivatives of V (u), we have

N2
1 = N1

2 (6a)

NX
1 = D1b (6b)

NX
2 = D2b : (6c)

If the platform incurs a �xed cost fi for each member on side i and there is no other
costs, its pro�t is N1(p1 � f1) +N2(p2 � f2)�DbpX , which can be written using (2) as a
function of u

�(u) � N1(�1N2 � u1 � f1) +N2(�2N1 � u2 � f2)�DbuX (7)

2.2 Separate pricing

If the platform sets uX = 0, a consumer�s decision regarding joining side 1 and that
regarding side 2 become independent. To see this, note that when uX = 0, the condition
for a consumer to join side i (either alone or in addition to side j), maxfui + ti; ui + ti +
uj + tj + uXg � maxfuj + tj ; 0g, holds if and only if ui + ti � 0, which has nothing to do
with uj or tj . This is why we call it a separate pricing strategy.

The demand functions when uX = 0 are de�ned as follows.

di(u1; u2) � Di(u1; u2; 0)

db(u1; u2) � Db(u1; u2; 0)

ni(ui) � Pr[ui + ti � 0] = Ni(u1; u2; 0) = di(u1; u2) + db(u1; u2):
n(u1; u2) � d1(u1; u2) + d2(u1; u2) + db(u1; u2)

The platform�s pro�t under separate pricing is

�(u1; u2) � n1(�1n2 � u1 � f1) + n2(�2n1 � u2 � f2) (8)

6 In general, the signs of �rst order derivatives with respect to u are, for i; j 2 f1; 2g, i 6= j, N i
i > 0,

N j
i > 0, N

X
i > 0; Di

i > 0; D
j
i < 0; D

X
i < 0; Di

b > 0; D
X
b > 0:
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The analysis of the optimal separate pricing strategy is the same as in Armstrong
(2006).

To the platform, each member of side i brings a direct pro�t of pi�fi, and also creates
a value of �j for each member on side j. The net economic value that the platform earns
from each side-i member, denoted vi, can be represented as the following

v1 � p1 � f1 + �2N2 = (�1 + �2)N2 � u1 � f1 (9a)

v2 � p2 � f2 + �1N1 = (�1 + �2)N1 � u2 � f2 (9b)

Therefore, we can write the �rst-order conditions for the optimal separate pricing prices
(p1; p2) as

pi � (fi � �jnj)
pi

=
vi
pi
=
1

�ii
, where �ii �

n0i(�inj � pi) � pi
ni(�inj � pi)

: (10)

Here �ii represents the price elasticity of demand for side i under separate pricing,
for a given size of the opposite side nj . This representation is the same as the result in
Proposition 1 of Armstrong (2006).

2.3 When to bundle the two sides?

Starting from the optimal separate pricing strategy, if the platform can increase pro�t by
changing uX , or equivalently by using a bundle discount or premium, we will know for
sure that mixed bundling dominates separate pricing.

From (7) we know

@

@uX
�(u) = NX

1 v1 +N
X
2 v2 �Db �DXb uX

By (6) we have
dib(u1; u2) = N

X
i (u1; u2; 0) (11)

And �nally, if (p1; p2) is the optimal separate pricing strategy, which induces common
values (uS1 ; u

S
2 ), by (10) we have

@

@uX
�(uS1 ; u

S
2 ; 0) = d1b �

p1
�11
+ d2b �

p2
�22
� db

= db(
d1bp1=db
�11

+
d2bp2=db
�22

� 1)

= db(
�1b
�11
+
�2b
�22
� 1)

where �ii �
n0i(�inj�pi)�pi
ni(�inj�pi) as in (10), and �ib �

dib(�1n2�p1;�2n1�p2)�pi
db(�1n2�p1;�2n1�p2) is the elasticity of

demand for the �bundle� of two sides with respect to pi, provided that the sizes of the

two sides are, respectively, n1 and n2. As n0i > 0, and d
i
b > 0, each ratio

�ib
�ii
exists and is

positive.
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Proposition 1 The platform should use mixed bundling if at the optimal separate pricing
strategy

�1b
�11
+
�2b
�22
6= 1: (12)

Moreover, o¤ering a small bundle discount strictly increases pro�t upon optimal separate

pricing if �
1
b

�11
+
�2b
�22
> 1, and charging a small bundle premium (if feasible) strictly increases

pro�t in the opposite case.

Proposition 1 shows accurately how the incentive of the platform to bundle two sides
depends on the four relevant price elasticities of demand in condition (12). The left-hand
side of (12) is a joint measure of the magnitude of price elasticities of demand for the
bundle of two sides relative to the price elasticities of demand for each side respectively.

In words, condition �1b
�11
+
�2b
�22
> 1 (respectively, �

1
b

�11
+
�2b
�22
< 1) roughly means that, the demand

for each side is on average no more than twice more elastic (respectively, on average at
least twice more elastic) than the demand for the bundle of two sides.7 All elasticities
are de�ned in terms of the price on the relevant side (as indicated by the superscripts in
(12)), given the sizes of the two sides at the optimal separate pricing strategy, n1 and n2,
respectively.

Existing results in the bundling literature have discussed alternative, arguably un-
usual, de�nitions of elasticities. Long (1984) (on page S243) and Armstrong (2013) (in his
Proposition 1) looked at elasticities of demand with respect to �simultaneous and equal
percentage increases in price-cost markups of both products�. They show that a bundle
discount (respectively, premium) is pro�table when the so-de�ned elasticity of demand for
the bundle of two products is larger (respectively, smaller) in magnitude than that for one
of the two products.

On the contrary, our condition �1b
�11
+

�2b
�22
> 1, for instance, does not require the demand

for either one side to be less elastic than that for the bundle, but only asks that the
demand for each side is on average no more than twice more elastic than that for the
bundle, with respect to the respective price for the relevant side. Consider a simple case

where �1b
�11
=

�2b
�22
= 2

3 , which implies
���ii�� = 1:5

���ib�� for both sides, such that the demand
for each side is more elastic than that for the bundle (with respect to the price for the
relevant side). Using the de�nition of elasticities by Long (1984) and Armstrong (2013),
however, in this situation the elasticity of demand for each side would be 1, and that for
the bundle would be 4

3 , which means that, in their terminology, the demand for each side
would still be considered less elastic than that for the bundle. As di¤erent de�nitions of
elasticities are used, these results should not be interpreted as contradicting each other.
The conclusion by both their results and our Proposition 1 is actually the same: A positive
bundle discount will be pro�table.

The results by Long (1984) and Armstrong (2013) are most useful when consumers
have non-additive valuations for two products. The bundling part of our model, how-
ever, focuses on a special case of theirs, i.e. one with additive valuations (see (1)). In
this case, their elasticity of demand for either one product at the optimal separate prices,
with respect to �simultaneous and equal percentage increases in price-cost markups of

7This interpretation refers to one special case of condition �1b
�11
+

�2b
�22
> 1: When �ib

�ii
> 1

2
we have���ii�� < 2 ���ib��.
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both products�, will always be 1; and their condition for a bundle discount (respectively,
premium) to be pro�table will simply reduce to: the bundle demand is elastic (respec-
tively, inelastic), i.e. the so-de�ned elasticity of demand for the bundle is larger than 1
(respectively, less than 1). Their results tell us no more than this in the situation with
additivity.

Our Proposition 1, however, provides further insights and shows precisely how their
elasticity concept would compare to 1, which depends on the sum of two standard bundle-
to-side demand elasticity ratios, each with respect to the price for the relevant side. More-

over, our condition (12) only restricts the average behavior of the two ratios, �
1
b

�11
and �2b

�22
,

and therefore illustrates a new �teeterboard�pattern between the constraints put on the
demand features of two sides. That is, if the constraint on one side is tighter, that on the

other can be more lax. For example, if �
1
b

�11
= 3

4 such that the demand for the bundle is

a little less elastic than the demand for side 1 (with respect to p1), then the constraint

on the demand features of the other side will simply be �2b
�22
> 1

4 , which means a bundle

discount will be pro�table as long as the demand for side 2 is no more than four times
more elastic than the demand for the bundle (with respect to p2).

As we are using more standard price elasticities of demand, condition (12) is potentially
easier to test empirically than the existing results using alternative de�nitions. Condition
(12) also suggests that mixed bundling dominates separate pricing in almost all cases.

Corollary 1 The platform should use mixed bundling if at the optimal separate pricing
strategy

�1n
�11
+
�2n
�22
6= 1, where �in �

@n

@ui

pi
ni
: (13)

Moreover, o¤ering a small bundle discount strictly increases pro�t upon optimal separate
pricing if �

1
n

�11
+ �2n
�22
< 1, and charging a small bundle premium (if feasible) strictly increases

pro�t in the opposite case.

(All omitted proofs are provided in the Appendix.) An equivalent condition to (12)

is (13), although the directions of inequalities need to be reversed. When �1n
�11
+ �2n

�22
< 1

(respectively, �
1
n

�11
+ �2n

�22
> 1), the demand for either side is on average at least twice more

elastic (respectively, on average no more than twice more elastic) than the demand for the
platform�s any service(s) (with respect to the price for the relevant side), and o¤ering a
small discount (respectively, charging a small premium) is pro�table.

2.3.1 Degree of mixedness

We now introduce a measure of how mixed a two-sided market is, the degree of mixed-
ness, which is de�ned as the proportion of consumers who join both sides amongst all
users of the platform. Formally, given u,

M(u) � Db(u)

N(u)
:

M(u) turns out a useful factor in determining the pro�tability of mixed bundling.
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Proposition 2 Suppose the distribution of types is symmetric with respect to two sides,
and the optimal symmetric separate pricing strategy induces common values (uS ; uS). Then
the platform should use mixed bundling if

M(uS ; uS) 6= 1� �11
�1(1)

, where �1(1) �
d11p1
d1

: (14)

Moreover, o¤ering a small bundle discount strictly increases pro�t if M(uS ; uS) > 1� �11
�1
(1)

,

and charging a small bundle premium (if feasible) strictly increases pro�t in the opposite
case.

�i(i) represents the price elasticity of demand for side i only, given the sizes of the two
sides are n1 and n2, respectively. When the two market sides are symmetric, Proposition
2 gives a de�nitive threshold for the degree of mixedness, exceeding which we can be sure
that o¤ering a discount is pro�table (whereas failing it means a premium is worthwhile).

As �11
�1
(1)

=
n01=n1
d11=d1

, where all terms are positive, the threshold (1 � �11
�1
(1)

) is strictly smaller

than 1.
A rather practical implication of Proposition 2 is that, if the market is symmetric and

highly mixed under separate pricing (i.e. M(uS ; uS) is very close to 1), it is very likely that
the platform will �nd it optimal to use a mixed bundling with a bundle discount. Consider
the telecommunications market and stock market, for instance, where it is conceivable that
the nature of the market primitives (i.e. the distribution of consumers�type t in our model)
is such that, even under separate pricing, a very high percentage of consumers will still
chose to both make and answer calls, or to both buy and sell stocks. M(uS ; uS) is likely
to be very near 1. Therefore a two-part tari¤ with a common membership fee as shown in
Table 1, which implements mixed bundling with a bundle discount, is likely the optimal
pricing strategy.

2.4 Optimal mixed bundling

Proposition 3 The optimal mixed bundling strategy satis�es the following conditions

v1 =
N1
N1
1

+
D1bpX �N1

2 v2
N1
1

(15a)

v2 =
N2
N2
2

+
D2bpX �N2

1 v1
N2
2

(15b)

pX = � Db
DXb

+
D1bv1 +D

2
bv2

DXb
(15c)

where vi is the �economic value� that the platform earns from each side-i member as
de�ned in (9).

Proof. These are the �rst-order conditions of pro�t maximization under mixed bundling,
derived by (7) and (9). Note the economic value that the platform earns from each
consumer who joins both sides is vb � v1+ v2� pX , although only pX appears in (15c).

Consider the impact of the platform raising ui, which has three marginal e¤ects:
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1. Gains on side i: A higher value o¤ered by the platform attracts more consumers.
As a result, Ni increases by N i

i , and from each new member of side i, the platform
earns vi. This is represented on the left-hand side of (15).

2. Losses on side i: As each existing side-i member gets an extra unit of value, raising
ui costs the platform exactly Ni on side i - the �rst term on the right-hand side of
(15).

3. Cross-side e¤ects: As the market is mixed, raising ui a¤ects the demand for side j
(Nj) and that for the bundle of two sides (Db) as well, which increase by N i

j and
Dib, respectively. As each member of side j brings an economic value of vj , and each
consumer of the bundle gets an extra discount pX , the demand changes in turn result
in a gain of N i

j � vj and a loss of Dib � pX to the platform, respectively. Their net
impact is represented (as a loss) by the second term on the right-hand side of (15).

These e¤ects exactly cancel one another out at optimality. The analysis of the e¤ects
of raising uX (or equivalently raising pX) is similar.

To facilitate a clear comparison between the �rst-order conditions for mixed bundling
in (15) and those for separate pricing in (10), we de�ne the following more general price
elasticities of demand, given the di¤erent market segments of respective sizes N1, N2 and
Db. For i 2 f1; 2g and j 2 f1; 2; Xg, let

Eji �
N j
i � pj
Ni

, and Ejb �
Djb � pj
Db

: (16)

Corollary 2 The optimal mixed bundling strategy satis�es the following conditions

p1 � (f1 � �2N2)
p1

=
1

E11
+
D1bpX �N1

2 v2
p1N1

1

(17a)

p2 � (f2 � �1N1)
p2

=
1

E22
+
D2bpX �N2

1 v1
p2N2

2

(17b)

1 = � 1

EXb
+
D1bv1 +D

2
bv2

pXDXb
: (17c)

Proof. Rewrite (15) using (9) and divide both sides of each equation by the relevant
mixed bundling price, and we are done.

Proposition 4 At the optimal mixed bundling strategy, if vi > 0, we have����pi � (fi � �jNj)pi

���� = ����vipi
���� > 1��Eii �� if and only if vj < DibpX

N i
j

. (18)

Proof. When vi > 0, as N i
i > 0, N

i
j > 0, and E

i
i =

N i
i pi
Ni
, we have��� vipi ��� > ��� 1Eii ���, vi � Ni

N i
i
> 0, DibuX �N i

jvj > 0 by (15) , vj <
Di
buX
N i
j
: Done.

Condition (18) is in stark contrast to the Lerner formula that applies to the optimal
separate pricing strategy as in (10). Under mixed bundling, suppose the platform is
earning a positive economic value on side i, then Proposition 4 tells us that the optimal

prices p must yield a �value-to-price ratio�
��� vipi ��� that is higher than the inverse of the price
14



elasticity of demand for side i, whenever the economic value earned on the opposite side
is not su¢ cient to cover the extra discounts o¤ered to new consumers who join both sides.

The latter condition, vj <
Di
bpX
N i
j
in (18), means that the cross-side e¤ects of raising ui

discussed in point 3 result in a net loss. The higher ratio on side i is exactly necessary
to compensate for this cross-side loss. On the other hand, should the economic value
earned on the opposite side be high enough to outweigh the extra discounts paid out, the
platform will optimally set a ratio on side i that is lower than what the Lerner formula
would suggest.

In summary, whether the optimal value-to-price ratio on one side should be higher or
lower than suggested by the Lerner formula depends on the sign of the net cross-side e¤ect,
which in turn depends on how well the platform does on the opposite side. As mentioned
earlier, the optimal separate pricing strategy in (10) is identical to the optimal strategy of
a standard two-sided market in Armstrong (2006). Therefore the contrast between (18)
and (10) precisely illustrates the di¤erence between the optimal pricing strategies in mixed
and standard two-sided markets. We discuss this contrast again in the numerical example
in section 2.5.

2.4.1 Strength of network e¤ects

Proposition 5 The platform�s maximized pro�t is strictly increasing in both �1 and �2,
at a rate of N1 �N2.

Proof. Rewriting the pro�t as an explicit function of the parameters �1 and �2, and
assuming the optimal mixed bundling is u�, we have

�(u�; �1; �2) = N1(�1N2 � u�1 � f1) +N2(�2N1 � u�2 � f2)�Dbu�X :

By the envelope theorem
@

@�i
�(u�; �1; �2) = N1 �N2:

From Proposition 5 we know the platform directly and equally bene�ts from stronger
network e¤ects in either direction across the two sides.

2.5 Numerical example

Suppose the strength of network e¤ects on both sides are �1 = �2 = 0:25, and the consumer
type t is uniformly distributed on unit square [�0:3; 0:7] � [�0:3; 0:7]. f1 = f2 = 0: All
calculations are done via Scienti�c WorkPlace 5.0 and the results are presented in Table
2.
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Table 2. Numerical Example with �i = 0:25, and t � U[�0:3; 0:7]� [�0:3; 0:7]

Separate Pricing Mixed Bundling Comment
ui �0:233 > �0:463 Negative values to either side
uX 0 0:735

ub �0:467 < �0:192
pi 0:350 0:633

pX 0 0:735 M.B. discount large
ai 0:75 > �0:149 M.B. subsidizes transactions
A 0 0:735 M.B. membership fee high
Ni 0:467 < 0:680

Di 0:249 > 0:007

Db 0:218 < 0:673

N 0:716 > 0:687 M.B. attracts fewer users overall
M = Db

N 30:4% < 98:0% M.B. market close to fully mixed
� 0:327 < 0:367

vi 0:467 < 0:804

vb 0:933 > 0:872
vi
pi

1: 333 1: 269

�ii or E
i
i 0:75 0:931

1
�ii
or 1
Eii

1: 333 1: 074 M.B.
��� vipi ��� > ��� 1Eii ���

�ib 2: 637 � S.P.
���ii�� < 2 ���ib��

�1b
�11
+

�2b
�22

7: 031 � S.P. �
1
b

�11
+

�2b
�22
> 1

Optimal mixed bundling At the optimal mixed bundling strategy, the platform is
providing negative common values to all consumers, but the consumers who join both sides
get a huge extra value (uX = 0:735). As some consumers have very high idiosyncratic
values (ti may be as high as 0:7), some of them still choose a single side despite the
low common value (ui = �0:463). However their proportion is very small. Almost all
consumers join both sides, and the degree of mixedness is 98%.

The strategy that achieves this outcome is quite interesting. The platform charges
members of each side a price of pi = 0:633, but o¤ers those who join both sides a huge
discount of pX = 0:735, which in fact results in a lower net price for the bundle than that
for one side (p1 + p2 � pX = 0:532 < pi). This strategy does not seem implementable in
practice as each consumer could choose to pay the lower bundle price regardless of which
service(s) she will actually use. Of course, this kind of �arbitrage�only works if consumers
have free disposal of their �membership status� for each side, or equivalently, have free
choice of their volume of transactions on each side, which is not true in the basic model.
The bundle of two sides in mixed bundling essentially lumps together N1 transactions with
side 1 and N2 transactions with side 2, no matter what idiosyncratic values (i.e. type) a
consumer has. The general model in section 3, however, relaxes this assumption.

This strategy can also be implemented with an equivalent two-part tari¤. The platform
can o¤er a subsidy of ai = �0:149 for each transaction made on either side, and recoup
these subsidies through a membership fee A = 0:735 that applies to any consumer. The
transaction subsidy essentially enhances the positive network e¤ects (�i = 0:25) and makes
the market slightly �more two-sided�. Enforceability of such a tari¤ requires the platform�s
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ability to monitor transactions, which in practice is usually not a¤ected by the �freedom
of choice�by consumers. This makes it more feasible than the mixed bundling strategy
in this particular example.8

At the optimal mixed bundling strategy, the platform earns high and relatively �even�
economic values from all members, in that vi = 0:804 and vb = 0:872 are rather large and
quite close in magnitude, relative to the parameters. The two inequalities in Proposition

4,
��� vipi ��� > 1

jEii j
and vj <

Di
bpX
N i
j
, both hold. Actually, the cross-side e¤ect in point 3 of the

discussion of Proposition 3, DibpX �N i
jvj = 0:123 > 0. The value-to-price ratio is higher

than the inverse of the price elasticity of demand for either side.

Optimal separate pricing The optimal separate pricing strategy involves a relatively
low price (pi = 0:35) for either side, which still results in a negative common value (ui =
�0:233 < 0) o¤ered to both sides. The platform earns twice more economic value from
double-side consumers (vb = 0:933) than from single-side consumers (vi = 0:467). The
value-to-price ratio at optimality on side i, vipi , is exactly equal to the inverse of the price
elasticity of demand for side i, as the Lerner formula (10) suggests. The equivalent two-
part tari¤ involves a positive transaction fee (ai = 0:35) to both sides, contrary to the
optimal transaction subsidy under mixed bundling.

Separate pricing attracts more users overall, but the degree of mixedness is much
higher under mixed bundling. At the optimal separate pricing strategy, @�

@uX
= 0:218 > 0,

indicating that o¤ering a positive bundle discount (or charging a positive membership
fee if a two-part tari¤ is used) will be pro�table. Alternatively, it can be calculated

that condition (12) holds with �>�as �
1
b

�11
+

�2b
�22
= 7: 031; and that condition (14) becomes

30:4% > 0 as �1(1) = �11 = 0:75. Indeed we see that the pro�t of the platform is higher
under mixed bundling (0:367 > 0:327).

3 A General Model for Non-Linear Pricing

In this section we provide a model where consumers are allowed to choose not only which
side(s) to join, but also what proportion of the members on either side with whom they
want to interact. We show that when the platform can monitor such choices by consumers
and can price based on them, the problem is isomorphic to a two-product non-linear pricing
problem in a standard one-sided market.

3.1 Original Representation

Assumption 1 (Type) The vector of consumers� idiosyncratic values derived from the
platform t = (t1; t2) follows distribution G on support T � R2, where T is weakly
convex with full dimension on R2.

The total number of members of side i is still denotedNi. A consumer t is free to choose
what share of all the members on either side (if any) to interact with. The proportion
she chooses on side i is denoted si 2 [0; 1]. si = 0 means that she does not interact with
anyone on side i, which in turn means that she does not join side j. si > 0 then means

8More discussion about two-part tari¤s and their equivalence to mixed bundling is provided in section
3.5.1.
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that the consumer does join side j, and interacts with a positive proportion si of members
on side i. Therefore the vector s � (s1; s2) 2 [0; 1]2 shows a consumer�s �consumption�
choice on the platform. For all side i consumers, the interaction with each member of side
j(6= i) creates a value of �i.

Therefore, the total value that a consumer t derives from consumption choice s on a
platform with two sides of sizes (N1; N2) is

U(s; t) � �1 �N2 � s2 + I(s2) � t1 + �2 �N1 � s1 + I(s1) � t2 (19)

where I(x) =
�
1; if x>0:
0; if x=0: Not joining either side will yield a total value U(0; t) = 0 for all t.

The platform knows the distribution of types in the population, but is unaware of any
particular consumer�s type. It can however price based on consumption choice through
strategy P (s) : [0; 1]2 ! R.

Given (N1; N2) and P (�), consumer t maximizes utility by choosing optimal consump-
tion

s(t) = (s1(t); s2(t)) � arg max
s2[0;1]2

U(s; t)� P (s) (20)

The size of side i is then �realized�as the number of consumers who choose to interact
with a positive share of members on side j

Ni = Pr[sj(t) > 0] (21)

The platform�s pro�t is then

� � Et[P (s(t))� C(s(t))] (22)

where C(s) : [0; 1]2 ! R+ is the cost of providing s = (s1; s2). For instance the cost
function may be C(s) = c1N1s1 + c2N2s2.

The platform chooses the optimal P (�) to maximize pro�t.

3.2 Dual Representation

There is an alternative way to construct the general model - the dual representation -
where we can use the actual number of members with whom a consumer interacts to
denote a consumption choice, instead of the proportion of members.

Denote ki the number of side-i members that a consumer chooses to interact with.
(Therefore, in the notation of the original representation, we have ki = Ni � si.) The total
value that a consumer t derives from interaction with k = (k1; k2) 2 R+2 members on the
platform can be written as

�(k; t) � �1 � k2 + I(k2) � t1 + �2 � k1 + I(k1) � t2 (23)

And assume the platform can price directly based on k = (k1; k2) by strategy Q(k) :
R+2 ! R:

Given Q(�), consumer t maximizes utility by choosing optimal consumption

k(t) = (k1(t); k2(t)) � argmax
k
�(k; t)�Q(k) (24)
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Therefore the platform chooses the optimal Q(�) to maximize pro�t9

� = Et[Q(k(t))� C(k(t))]: (25)

Inspection of formulae (23) through (25) reveals that they represent something isomor-
phic to a standard one-sided two-product nonlinear pricing problem. As here the utility
of any consumer t does not depend on the total size of either market side, the utility
function �(k; t) exhibits no network e¤ects. A consumer here simply chooses the numbers
of members of either side to interact with, and the monopolist chooses the optimal pricing
strategy based on the numbers chosen by consumers. This is the same as a two-product
nonlinear pricing problem formulated in Chapter 13 of Wilson (1993), in the context of a
one-sided market.

The �nal element that the dual representation needs in order to close the two-sided
market model is the normalization of the size of side i as the share of consumers who decide
to interact with a positive number of members on side j, and to restrict any consumer�s
consumption choice on either side not to exceed the size of that side. That is,

Ni = Pr[kj(t) > 0]; j 6= i; i; j 2 f1; 2g; and (26a)

ki(t) 2 [0; Ni];8t 2 T: (26b)

In the dual representation, the impact of network e¤ects on a consumer�s choice is
only manifested as a cap on the number of consumers she can interact with on either side,
as condition (26b) shows. A larger size of either side gives each consumer a larger set of
potential trading partners to choose from. It should therefore be noted that the choice set
of the optimal consumption in (24) needs to be restricted to that in condition (26).

3.3 Equivalence

Proposition 6 The Original Representation ((19) through (22)) of the general model has
a solution if and only if the Dual Representation ((23) through (26)) has a solution.
If the Dual Representation has an optimal pricing strategy Q(�) which induces two mar-
ket sides of sizes (N1; N2), respectively, then the optimal pricing strategy of the Original
Representation is

P (s1; s2) = Q(N1 � s1; N2 � s2) for any (s1; s2) 2 [0; 1]2:

Condition (26) requires that the optimally chosen numbers of members on either side,
ki(t), cannot exceed Ni, the total number of members on that side. If condition (26)
holds, we can always convert ki(t) in the dual representation into si(t) in the original
representation, and vice versa, and hence the two representations are equivalent.

The two-product nonlinear pricing problem in a one-sided market has been studied in
the literature, and there are known methods that can solve it, such as the �parametric-
utility�approach by Wilson (1993). The discussion of these methods is beyond the scope of
this paper. The following is a summary of the main insights on the optimal pricing strategy
and the equilibrium outcome of the market from Wilson (1993), Armstrong (1996) and

9Mind the temporary abuse of notations � and C. The technical di¤erences between the cost functions
in di¤erent representations of the general model are discussed in step 1-2-1 of the proof of Proposition 6
in the Appendix.
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Rochet and Chone (1998):

� There is exclusion at the optimal strategy, i.e. some consumers will not be served;

� There is bundling of the two sides, i.e. ex post some consumers will choose to
participate on both sides and the market will be mixed;

� There is bunching of types, i.e. the platform will not charge all di¤erent consumers
di¤erent total prices. Some consumers of di¤erent types will be �forced�to choose
the same consumption bundle, and will hence pay the same total price.

3.4 Discussion

An implicit assumption of the general model is that when a consumer chooses the propor-
tions or numbers of members of each side to interact with, she commits to these choices,
and the platform can charge a total fee based on her commitment, no matter whether
these interactions (or the anticipated bene�ts from them) will be realized or not. There-
fore the general model will mostly be applicable to markets where the platform has some
kind of �bu¤er�mechanism for unrealized interactions, such as the �voice mail� system
in telecommunications markets.

Not all phone calls made are answered by the people intended - some go to voice mail,
some reach the wrong people, and some are simply not answered. An unrealized interaction
relevant to the assumption mentioned previously occurs whenever a caller leaves a voice
message for a wrong number, which is in turn ignored by the actual receiver. In this
situation, the �interaction� intended by the caller only goes half way, and therefore no
anticipated bene�ts will be realized for either the caller or the intended receiver. However,
this does not prevent the platform from counting the call towards the caller�s usage, and
therefore poses no real problem for the platform�s pricing mechanism. Notwithstanding
the unrealized interactions or bene�ts, telephone companies are still able to charge based
on the number and/or duration of calls made and received, including those that only go
�half way�.

Many information exchange platforms where users can post and view messages have
�bu¤er�mechanisms similar to the voice mail system that allow messages to be stored for
future retrieval. A few such examples are mentioned in section 1, where the general model
should also apply. In applications where violation of the assumption mentioned previously
is a major concern, however, the general model needs to be modi�ed. In practice, the real-
ization of an interaction requires that both parties involved in the interaction choose each
other in their consumption choice. In our model, as each seller (respectively, buyer) cre-
ates the same network bene�t, say �i, for all buyers (respectively, sellers) on the opposite
side, there is no additional value in �matching�any particular pair of members from two
sides. If we were to require that all committed interactions be realized, additional �market
clearing�type of conditions, such as Et[Ni � si(t)] = Et[Nj � sj(t)] or Et[ki(t)] = Et[kj(t)],
may be necessary for equilibrium. We have not found a feasible way to solve the general
model with such conditions, and this may be a topic of interest for future work.

It is worth mentioning that there is no such problem in our basic model. Like many
other models in the literature of two-sided markets, e.g. Armstrong (2006) and Rochet and
Tirole (2006), our basic model assumes that joining one side is equivalent to committing
to interacting with the whole opposite side, and hence the market always clears.
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3.5 Nesting the basic model in the general model

The basic model can be formulated as a special case of the general model. In the original
representation of the general model, if we restrict si to be either 0 or 1 (instead of any real
number in [0; 1]), we are back to the basic model. Many existing models in the literature
on two-sided markets, e.g. Armstrong (2006) and Rochet and Tirole (2003 and 2006),
impose this restriction on consumers�choices.

To see this, we use �i = 1 to denote a consumer�s choice of joining side i and �i = 0 to
denote not joining i.10 Then the total value that consumer t derives from �membership
choice�� � (�1; �2) 2 f0; 1g2 on a platform with two sides of respective sizes (N1; N2) is

U(�; t) � �1(�1N2 + t1) + �2(�2 �N1 + t2) (27)

Not joining either side will yield a value of U(0; t) = 0 for all t.
The platform can monitor every consumer�s membership choice � and hence can price

based on it through strategy P (�) : f0; 1g2 ! R. The binary nature of �1 and �2 means
that P (�) can only take on four possible values P (1; 0), P (0; 1), P (1; 1) and P (0; 0).

Given (N1; N2) and P (�), consumer t maximizes utility by choosing the optimal �

�(t) = (�1(t); �2(t)) � argmax
�
U(�; t)� P (�) (28)

The size of side i is then realized as the number of consumers who choose to join that
side

Ni = Pr[�i(t) > 0] = Et[�i(t)] (29)

The platform then chooses the optimal P (�) to maximize pro�t

� � Et[P (�(t))� C(�(t))] (30)

3.5.1 Mixed bundling and two-part tari¤ as general pricing strategies

It is clear that the mixed bundling strategy we used in the basic model p = (p1; p2; pX) 2
R3 can be used directly to construct the general pricing strategy P (�) : f0; 1g2 ! R in
the previous section in the following way

P (�) = �1p1 + �2p2 � �1�2pX

which implies:

P (1; 0) = p1;P (0; 1) = p2;P (1; 1) = p1 + p2 � pX ;P (0; 0) = 0:

Now we show that the two-part tari¤ we discussed in the real-life examples in Table 1
can also construct the general P (�).

Consider the platform using a two-part tari¤ (A; a1; a2) 2 R3, where A is a common
and �xed �membership�fee (or subsidy if negative) applicable to any user of the platform,
and ai is the marginal �transaction� fee (or subsidy if negative) to a side-i consumer,
for every member on the opposite side j (since each i-j member pair interacts once).

10�i = 1 (respectively, �i = 0) here corresponds to sj = 1 (respectively, sj = 0) in the general model,
where j 6= i.
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Enforceability of such a tari¤ requires the platform�s ability to monitor any consumer�s
membership status as well as the size of each side, among possibly other things.

The relationship between mixed bundling strategy (p1; p2; pX) and two-part tari¤
(A; a1; a2) can be summarized as the following

p1 = a1N2 +A; p2 = a2N1 +A; pX = A:

The two-part tari¤ (A; a1; a2) can be used to construct P (�) in the following way, where
Ni is as de�ned in (29):

P (�) = �1a1N2 + �2a2N1 + (�1 + �2 � �1�2)A

which implies

P (1; 0) = a1N2 +A;P (0; 1) = a2N1 +A;

P (1; 1) = a1N2 + a2N1 +A;P (0; 0) = 0:

It is obvious that the two-part tari¤ (A; a1; a2) as well as the mixed bundling strategy
p = (p1; p2; pX) can achieve any pricing strategy P (�) with P (0; 0) = 0, therefore using
either of them in the basic model (where we restrict the consumption choice si to be either
0 or 1) is without loss of generality.

Long (1984) illustrated the equivalence between mixed bundling and two-part tari¤s
in a simpler context where N1 and N2 in our model are both equal to 1. The rationale
is the same here. In practice, there may be situations where one of these two strategies
become easier to implement than the other, as we have discussed in the numerical example
of section 2.5.11

4 Conclusion

The platform pricing problem in mixed two-sided markets has two prominent elements:
network e¤ects (from two-sidedness) and multiple products (from mixedness). Our models
and results show that: 1) the external bene�ts that each consumer creates for the opposite
side through network e¤ects need to be accounted for in all formulas related to the �net
pro�t�that the platform earns from the consumer; 2) the optimal pricing strategy towards
one side does not only depend on how well the platform does on the other side, but also
depends on the cross-side e¤ects of demand and pro�ts in the intersection of the two sides;
and 3) there are ways that methods and solutions for the one-sided-market context can
be applied to the analysis of mixed two-sided markets.

For a mixed two-sided platform in real life, the choice among di¤erent theoretical
pricing strategies (e.g. that between separate pricing and mixed bundling) may entail much
more than just a change in pricing. It may also involve completely di¤erent product/system
design of the platform. Note that mobile phone networks do not have to o¤er a SIM card
that has both calling and receiving functions. It is technologically feasible to make separate
devices that only have either one function. In fact, in the latter half of the last century,
telecommunications networks in many countries o¤ered pagers which are mobile devices
that can only receive messages. Nor does eBay have to provide all users with both buyer

11See Rochet and Tirole (2006) for further discussion of feasibility of di¤erent strategies.
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and seller services. It is up to the platform whether or not to design the product and/or
system to allow the callers to receive calls, to allow the lenders to borrow money, or to
allow the buyers to sell. The choice of optimal pricing strategy may be the result of a
particular design, and can certainly also be the reason why the platform is designed the
way it is.

5 Appendix

Proof of Corollary 1

As db = ni � di implies dib = n0i � dii, and n = di + nj implies @n
@ui

= dii, we have

@

@uX
�(uS1 ; u

S
2 ; 0) = d1b �

p1
�11
+ d2b �

p2
�22
� db

= (n01 � d11)
p1
�11
+ (n02 � d22)

p2
�22
� db

= n01
p1
�11
� d11

p1
�11
+ n02

p2
�22
� d22

p2
�22
� db

= n1 + n2 � db � n(
d11p1=n

�11
� d

2
2p2=n

�22
)

= n(1� �
1
n

�11
� �

2
n

�22
)

Therefore
@

@uX
�(uS1 ; u

S
2 ; 0) ? 0 i¤

�1n
�11
+
�2n
�22
7 1:�

Proof of Proposition 2

First consider condition (14) holding with �>�. As M = db
n > 1�

�11
�1
(1)

implies n
0
1=n1
d11=d1

=

�11
�1
(1)

> 1� db
n =

2d1
n , we have

n01=n1
d11

> 2
n . Moreover, n

0
1 > 0, and d

1
1 > 0. Therefore

@

@uX
�(uS ; uS ; 0) = d1b �

n1
n01
+ d2b �

n2
n02
� db

= 2(n01 � d11)
n1
n01
� db

= n� 2d11
n01=n1

> 0:

And the proof for the opposite case is similar.�

Proof of Proposition 6

The key elements of the following proof are the relationship between the optimal strate-
gies in di¤erent representations, P (�) and Q(�), and that between the optimal consumption
choices they induce, s(�) and k(�). For completeness, however, many obvious steps implied
by piecewise maximization of a consumer�s utility are still spelt out.
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1. Necessity:

Suppose the Original Representation (henceforth OR) has a solution P (�) which induces
optimal consumption s(t) = (s1(t); s2(t)) satisfying (20), and incudes Ni = Pr[sj(t) > 0].
Note that given any pricing strategy there always exist trivial equilibria where N1 = N2 =
0; and whenever one of Ni is zero, the other must also be zero in equilibrium. Therefore
in this proof we only focus on the more interesting cases where Ni > 0; i = 1; 2:

De�ne ki(t) � Ni � si(t);8t; and Q(k1; k2) � P ( k1N1 ;
k2
N2
);8(k1; k2) 2 [0; N1]� [0; N2]:

We need to prove that this Q(�) maximizes the platform�s pro�t in the Dual Repre-
sentation (henceforth DR), and induces optimal consumption choice k(t) = (k1(t); k2(t))
within [0; N1]� [0; N2]:

1-1: We �rst prove that given P (�) and Ni, the k(�) de�ned above is optimal in DR.
Suppose it is not, i.e. for some consumer t there exists k0(t) 2 [0; N1] � [0; N2], and

k0(t) 6= k(t) such that

�(k0(t); t)�Q(k0(t)) > �(k(t); t)�Q(k(t)) (31)

Suppose further that k(�) is still optimal for all other consumers, and therefore the
unilateral deviation of consumer t from k(t) to k0(t) does not a¤ect the sizes of the
two sides (as T is continuous), and we still have Ni = Pr[sj(t) > 0] = Pr[

kj(t)
Nj

> 0] =

Pr[kj(t) > 0]:

Let s0i(t) �
k0i(t)
Ni
, s0(t) � (s01(t); s02(t)), and we know s0(t) 2 [0; 1]2: From (31) we know:

�(k0(t); t)�Q(k0(t)) = �((N1s
0
1(t); N2s

0
2(t)); t)�Q(N1s01(t); N2s02(t))

= U(s0(t); t)� P (s0(t))
> �(k(t); t)�Q(k(t))
= U(s(t); t)� P (s(t))

where the second and fourth equalities come from the de�nitions of �(�), U(�), P (�) and
Q(�).

This contradicts the assumption that s(t) is the optimal consumption of consumer t
satisfying (20). Therefore no unilateral deviation by any consumer t from k(t) will be
pro�table, and hence k(�) is optimal in DR.

1-2-1: We now prove that given P (�), the Q(�) de�ned above maximizes the platform�s
pro�t in DR.

For distinction, de�ne the cost function for DR as F (k(t)), and still use C(s(t)) for
OR. These cost functions are connected to each other in the following way: If s(t) induces
Ni = Pr[sj(t) > 0], and ki(t) = Ni � si(t), then F (k(t)) = F (N1s1(t); N2s2(t)) = C(s(t)).

Suppose Q(�) does not maximize pro�t in DR, i.e. there exists some other pricing
strategy Q0(�) that is optimal in DR, which induces some consumption choice k0(t) (not
necessarily the same k0(t) as in step 1-1), and market sizes N 0

i = Pr[k
0
j(t) > 0], such that

N 0
i > 0; i = 1; 2, and Q

0(�) satis�es

Et[Q
0(k0(t))� F (k0(t))] > Et[Q(k(t))� F (k(t))] (32)

Let P 0(s1; s2) � Q0(N 0
1 � s1; N 0

2 � s2);8(s1; s2) 2 [0; 1]2, and let s0i(t) �
k0i(t)
N 0
i
(not nec-

essarily the same s0(t) as in step 1-1). Therefore N 0
i = Pr[k0j(t) > 0] = Pr[s0j(t) > 0],
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i.e. s0(t) induces N 0
i in the OR, which implies F (k

0(t)) = C(s0(t)). Then as F (k(t)) =
F (N1s1(t); N2s2(t)) = C(s(t)), where Ni is induced by s(t), by (32) we have

Et[Q
0(k0(t))� F (k0(t))] = Et[Q

0(N 0
1s
0
1(t); N

0
2s
0
2(t))� F (N 0

1s
0
1(t); N

0
2s
0
2(t))]

= Et[P
0(s0(t))� C(s0(t))]

> Et[Q(k(t))� F (k(t))]
= Et[P (s(t))� C(s(t))]

If the s0(�) in the inequality Et[P 0(s0(t)) � C(s0(t))] > Et[P (s(t)) � C(s(t))] is the
consumption choice induced by P 0(�), we will have found a contradiction to the assumption
that P (�) is the optimal pricing strategy in OR, and we will have proved the necessity part
of Proposition 6.

1-2-2: Now we prove that the s0(�) de�ned in step 1-2-1 is indeed induced by P 0(�).
This is quite similar to step 1-1.

Suppose it is not, i.e. given P 0(�) and N 0
i = Pr[k

0
j(t) > 0], there exists some consumer

t who has a pro�table unilateral deviation s00(t) 6= s0(t) that satis�es

U(s00(t); t)� P 0(s00(t)) > U(s0(t); t)� P 0(s0(t)) (33)

Let k00i (t) � N 0
i � s00i (t), and therefore k00i (t) 6= k0i(t): By (33) we have:

U(s00(t); t)� P 0(s00(t)) = U((
k001(t)

N 0
1

;
k002(t)

N 0
2

); t)� P 0(k
00
1(t)

N 0
1

;
k002(t)

N 0
2

)

= �(k00(t); t)�Q0(k00(t))
> U(s0(t); t)� P 0(s0(t))
= �(k0(t); t)�Q0(k0(t))

where the second and fourth equalities come from the de�nitions of �(�), U(�), P 0(�) and
Q0(�) in step 1-2-1.

This contradicts the assumption in step 1-2-1 that k0(t) is the optimal consumption of
consumer t induced by pricing strategy Q0(�) in DR. Therefore no unilateral deviation by
any consumer t from s0(t) will be pro�table, and s0(�) must be the optimal consumption
choice induced by P 0(�) in OR.

Therefore in step 1-2-1, we indeed have found a contradiction, and hence we can con-
clude that given P (�), the Q(�) de�ned at the beginning of the whole proof does maximize
the platform�s pro�t in DR. Combining steps 1-1, 1-2-1 and 1-2-2, we have proved the
necessity part of Proposition 6.

2. Su¢ ciency:

Suppose DR has a solution Q(�) which induces consumption k(t) = (k1(t); k2(t))
satisfying (24), and the induced two market sides are of sizes Ni > 0 satisfying (26). We
need to prove that P (s1; s2) � Q(N1 � s1; N2 � s2) ;8(s1; s2) 2 [0; 1]2 maximizes pro�t in
OR, and induces optimal consumption si(t) � ki(t)

Ni
;8t.

2-1: We �rst show that given Q(�) and Ni, the s(�) de�ned above is the optimal
consumption choice in OR.

Suppose it is not, i.e. given Q(�) and Ni = Pr[kj(t) > 0], there exists some consumer
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t who has a pro�table unilateral deviation s0(t) 6= s(t) that satis�es

U(s0(t); t)� P (s0(t)) > U(s(t); t)� P (s(t)) (34)

Let k0i(t) � Ni � s0i(t), and therefore k0i(t) 2 [0; Ni], and s0i(t) =
k0i(t)
Ni
: By (34) we have:

U(s0(t); t)� P (s0(t)) = �(k0(t); t)�Q(k0(t))
> U(s(t); t)� P (s(t))
= �(k(t); t)�Q(k(t))

where the second and fourth equalities come from the de�nitions of �(�), U(�), P (�) and
Q(�).

This contradicts the assumption in that k(t) is the optimal consumption of consumer t
induced by pricing strategy Q(�) in DR. Therefore no unilateral deviation by any consumer
t from s(t) will be pro�table, and s(�) must be the optimal consumption choice in OR.

2-2-1: We now show that given Q(�), the P (�) de�ned above maximizes the platform�s
pro�t in OR.

Suppose it does not, i.e. there exists some other pricing strategy P 0(�) that is optimal
in OR, which induces some consumption choice s0(t) (not necessarily the same s0(t) as
in step 2-1), and market sizes N 0

i = Pr[s0j(t) > 0], such that N 0
i > 0; i = 1; 2, and P 0(�)

satis�es
Et[P

0(s0(t))� C(s0(t))] > Et[P (s(t))� C(s(t))] (35)

Let k0i(t) � N 0
i �s0i(t);8t (not necessarily the same k0(t) as in step 2-1), and Q0(k1; k2) �

P 0( k1
N 0
1
; k2
N 0
2
), 8(k1; k2) 2 [0; N 0

1] � [0; N 0
2]: By de�nition, F (k

0(t)) = C(s0(t)). According to

the de�nition of s(t) at the beginning of the su¢ ciency part, Ni = Pr[kj(t) > 0] =
Pr[sj(t) > 0], therefore F (k(t)) = F (N1s1(t); N2s2(t)) = C(s(t)). Then by (35) we have

Et[P
0(s0(t))� C(s0(t))] = Et[Q

0(k0(t))� F (k0(t))]
> Et[P (s(t))� C(s(t))]
= Et[Q(k(t))� F (k(t))]

If the k0(�) in the inequality Et[Q0(k0(t)) � F (k0(t))] > Et[Q(k(t)) � F (k(t))] is the
consumption choice induced by Q0(�), we will have found a contradiction to the assumption
that Q(�) is the optimal pricing strategy in DR, and we will have proved the su¢ ciency
part of Proposition 6.

2-2-2: Now we prove that the k0(�) de�ned in step 2-2-1 is indeed induced by Q0(�).
This is quite similar to step 2-1.

Suppose it is not, i.e. given Q0(�) and N 0
i = Pr[s

0
j(t) > 0], there exists some consumer

t who has a pro�table unilateral deviation k00(t) 6= k0(t) that satis�es

�(k00(t); t)�Q0(k00(t)) > �(k0(t); t)�Q0(k0(t)) (36)
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Let s00i (t) �
k00i (t)
N 0
i
, and therefore s00i (t) 6= s0i(t): By (36) we have:

�(k00(t); t)�Q0(k00(t)) = �((N 0
1s
00
1(t); N

0
2k
00
2(t)); t)�Q0(N 0

1s
00
1(t); N

0
2k
00
2(t))

= U(s00(t); t)� P 0(s00(t))
> �(k0(t); t)�Q0(k0(t))
= U(s0(t); t)� P 0(s0(t))

where the second and fourth equalities come from the de�nitions of �(�), U(�), P 0(�) and
Q0(�) in step 2-2-1.

This contradicts the assumption in step 2-2-1 that s0(t) is the optimal consumption of
consumer t induced by pricing strategy P 0(�) in OR. Therefore no unilateral deviation by
any consumer t from k0(t) will be pro�table, and k0(�) must be the optimal consumption
choice induced by Q0(�) in DR.

Therefore in step 2-2-1, we indeed have found a contradiction, and hence we can
conclude that given Q(�), the P (�) de�ned at the beginning of the su¢ ciency part does
maximize the platform�s pro�t in OR. Combining steps 2-1, 2-2-1 and 2-2-2, we have
proved the su¢ ciency part of Proposition 6.�
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