
Asymmetric fuel price responses under heterogeneity 

Jacint Balaguer and Jordi Ripollés 

Department of Economics, University Jaume I, Castelló de la Plana, Spain 

 (e-mails: jacint.balaguer@uji.es; jripolle@uji.es) 

 

Abstract 

We explore the effect of cross-sectional aggregation of data on estimation and test of 

asymmetric retail fuel price responses. The analysis was performed on data collected 

daily from individual fuel stations in the Spanish metropolitan areas of Madrid and 

Barcelona. While the standard OLS estimator is applied to an error correction model in 

the case of the aggregated time series, we use the mean group approaches developed by 

Pesaran and Smith (1995) and Pesaran (2006) to estimate the short- and long-run micro-

relations under heterogeneity. We found remarkable differences between the results of 

estimations using aggregated and disaggregated data, which are highly robust to both 

datasets considered. Our findings could help to explain many of the results in the 

literature on this research topic. On the one hand, they suggest that the typical 

estimation with aggregated data clearly tends to overestimate the persistence of shocks. 

On the other hand, we show that aggregation may generate a loss of efficiency in 

econometric estimates that is sufficiently large to hide the existence of the “rockets and 

feathers” phenomenon. 
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1. Introduction 

Since Bacon’s (1991) seminal paper, an increasing number of empirical studies have 

explored the adjustment of fuel prices in response to their input price shocks. Scholars 

have paid special attention to check whether, as consequence of a high level of 

efficiency, the adjustment process is rapid and symmetric. An overview of the literature 

reveals that the existing results are rather mixed even for an analysis of the same 

context, unfortunately making it difficult to reach any firm conclusions on this question 

(e.g., Perdiguero-García, 2013). Some authors (e.g., Bachmeier and Griffin, 2003; 

Bettendorf et al., 2003), have shown that the diversity of results may be explained to 

some extent by temporal aggregation of data at a weekly or monthly level, since in this 

case the highest frequency of response to shocks is ignored. That is, temporal 

aggregation may cause omission of a set of distributed lag variables regardless of the 

functional form of the dynamic model applied which, in turn, would generate serious 

estimation bias as defined by Geweke (1978). Since this econometric limitation has 

been recognized, interest in collecting and using daily fuel prices has increased in an 

attempt to obtain more accurate evidence on the issue (e.g., Al-Gudhea et al., 2007; 

Bettendorf et al., 2009; Balaguer and Ripollés, 2012; Kuper, 2012; Wlazlowski, et al., 

2012; Valadkhani, 2013). However, even when daily data are used, some limitation 

could arise in the analyses of fuel retail price responses for regions or countries, since 

most of them continue in the tradition of using aggregated data across fuel stations. 

Hence, their conclusions are implicitly based on the “representative agent” assumption, 

which may not be well suited. At this stage of the research it seems appropriate to ask 

how measuring fuel price responses might be further improved by adopting a 

supplementary empirical strategy consisting of disaggregating daily data in a cross-

sectional dimension and, therefore, relaxing this standard assumption. The theoretical 

econometric background, results on price transmission for non-fuel products, and the 

estimated persistence of induced adjustments in many of the fuel markets analyzed, are 

three aspects that encourage us to explore this question. 

The possible gain in estimates derived from cross-sectional disaggregation of data has 

been widely discussed since the early contribution of Theil (1954). To date, numerous 

papers have studied this subject for dynamic models. There is broad consensus that the 

dynamics exhibited by time series for heterogeneous individuals may be markedly 

different from those displayed by a time series derived from the aggregation of the data, 
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therefore compromising the validity of estimations when the latter time series are used 

(e.g., Granger, 1980; Trivedi, 1985; Stoker, 1993; Pesaran and Smith, 1995; Pesaran, 

2003). For our purposes, special attention should be given to the particular outcome 

provided by Lippi (1988) for error correction models, since they have been extensively 

applied in analysis of fuel price responses. It has been shown that, under these models, 

there is cross-sectional aggregation bias that clearly tends to overstate the dynamic 

process on its way toward the equilibrium. In this regard, it seems reasonable to apply 

regressions for micro units which allow us to capture any adjustment specificities to 

provide a more realistic view. In line with the idea underlying some modern panel data 

procedures such as those developed in Pesaran and Smith (1995) and Pesaran (2006), an 

overview of the market behavior can then also be obtained by averaging the specific 

estimated coefficients. 

There is currently some evidence of vertical price transmission for non-fuel oil products 

which are consistent with the theoretical predictions discussed above. For example, 

Powers (1995) and Peltzman (2000) showed that estimations with cross-sectional 

aggregated data for several supermarket products reveal an artificial slowing down of 

the estimated wholesale-retail price responses. Similar results were obtained in Cramon-

Taubadel et al. (2006) for an analysis of German food products. This sort of aggregation 

bias has also been demonstrated in international price transmission. More specifically, 

Imbs et al. (2005), Broda and Weinstein (2008), and Roberston et al. (2009) found that 

when heterogeneity of traded products is not taken into account, the estimated dynamics 

are overstated and the increase in the persistence of shocks of real exchange rates is 

exaggerated. 

Lastly, another motivation for our research question comes from existing estimates on 

fuel price responses in the latter part of the distribution chain. In a review of the 

literature, many studies found that the estimated dynamic process following an isolated 

oil shock is suspiciously slow and persistent over time until the price level equilibrium 

is reached. Indeed, as can be seen from the selected papers in Table 1, the overall 

adjustment in the studied markets does not often close 50% of the gap even after an 

estimated period of several weeks, regardless of the geographical context, data 

frequency, and econometric methodology chosen. Nevertheless, considering that fuel 
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stations in the investigated markets are completely free to adjust their prices daily after 

frequent oil price shocks, these empirical results seem rather surprising.
1
 

[Please insert Table 1 here] 

The present paper uses panel data resulting from statistical information collected daily 

for a large set of fuel stations.
2
 Specifically, we focus on data from the metropolitan 

areas of Madrid and Barcelona, which have a substantial number of Spanish fuel 

stations. This allows us to explore, on the one hand, the advantages of cross-sectional 

data disaggregation to improve knowledge of fuel price responses and test their 

hypothetical asymmetries. On the other hand, we provide new evidence on a context for 

which the empirical results are somewhat puzzling to date, since the adjustment toward 

equilibrium takes a large number of days and there is no consensus about whether 

asymmetries have occurred, even in similar studied periods (e.g., Galeotti et al., 2003; 

Contin-Pilart, et al. 2009). 

We adopt the mean group (MG) approach of Pesaran and Smith (1995) which combines 

at least three possible advantages of the traditional estimates from OLS with cross-

sectional aggregated data. First, it allows us to control for unobserved heterogeneity 

across fuel stations (both differences in markups as well as in dynamic behavior). 

Second, it also makes it possible to further incorporate common correlated effects (MG-

CCE), as proposed by Pesaran (2006). Specifically, in line with the recent paper by 

Eberhardt and Teal (2012), we implement the MG-CCE by taking into account possible 

cross-sectional dependence with the nearest neighboring fuel stations. Thus, for 

example, it will allow us to consider that fuel stations located in high traffic intensity 

zones on certain days may be taking advantage of the large volume of demand during 

this period together with their neighboring stations. Third, since cross-sectional 

disaggregation for both metropolitan areas will provide a large amount of statistical 

information, we obtain more degrees of freedom and more sample variability. We 

therefore expect that the power of test for asymmetries will be considerably increased. 

                                                           
1
 These outcomes contrast with those obtained by Bettendorf et al. (2009), who analyzed the daily retail 

price adjustments to wholesale shocks for a single firm. Particularly, the authors found that the half-life of 

Shell’s price transmission in the Netherlands is reduced to about five days. This result reinforces our 

suspicion that many of the existing estimations concerning pricing behavior in retail fuel markets fail to 

give us an accurate overview of the real pricing dynamics of firms that operate in those markets. 

2
 To our knowledge, the paper by Noel (2009) is the only one that uses daily prices for a set of individual 

fuel stations in order to study dynamic pricing behavior. However, unlike our work, the aim of this author 

is to examine Edgeworth Cycles. 
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The rest of the paper is structured as follows. In Section 2 we present the sources and 

some characteristics of our dataset, perform a time series analysis, and detail the 

empirical specification and methodologies. Section 3 provides the main results from the 

micro units and aggregated data, and discusses the differences among them. Concluding 

remarks are presented in Section 4. 

2. Empirical framework 

2.1 Data 

We analyze fuel stations located in Spain’s two largest metropolitan areas: Madrid and 

Barcelona. Because there is no a single official definition of the Spanish metropolitan 

areas, we considered different proposals. For the metropolitan area of Madrid we adopt 

the definition provided by García Ballesteros and Sanz Berzal (2002). In the case of 

Barcelona we follow the territorial division proposed by the General Territorial Plan of 

Catalonia in accordance with autonomous law 1/1995 (published in the Official Journal 

of the Generalitat of Catalonia 2032). 

For each one of these geographical areas we collected daily information on the retail 

prices (Euros/liter) for diesel fuel.
3
 These data were taken from the website of the 

Spanish Ministry of Industry, Energy and Tourism (http://geoportal.mityc.es/). Because 

the current prices only remain on this website for the day in question and under Spanish 

law (Order ITC/2308/2007) historical data cannot be published,
4
 all retail prices were 

extracted daily throughout the period from June 10, 2010, to November 25, 2012. It 

should be noted that some fuel stations did not provide price-setting information for 

some of the days on which we collected the data (for reasons such as repair work or 

vacation closure). As result we study the pricing dynamics on a final sample of 900-

days, which corresponds to 283 and 185 fuel stations located in the areas of Madrid and 

Barcelona, respectively. The empirical study therefore includes, for any day of the 

period considered, the retail prices set by more than 60% of the total population of fuel 

                                                           
3
 Diesel fuel represents about 80% of total fuels used in Spain for road transport (according to annual data 

for 2012 from the Asociación Española de Operadores de Productos Petrolíferos). 

4
 Fuel stations are required to submit current retail prices to the Ministry every Monday and whenever 

changes are applied. Information on changes in retail prices is generally submitted several days per week. 

http://geoportal.mityc.es/
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stations in each of the two areas. All retail prices are expressed net of taxes following 

the information published by the Spanish Ministry of Economy’s Tax Office.
5
 

The wholesale prices of the corresponding raw material are the Amsterdam-Rotterdam-

Antwerp market spot prices (Euros/liter), taken from the Platts database (code 

AAQCI00). Missing values resulting from closure of the spot market on weekends and 

vacations were completed with prices from the previous day. 

Lastly, the geographical location of each fuel station in both areas was also collected 

from the Ministry of Industry, Energy and Tourism website with the purpose of 

considering the price of neighboring fuel stations in a part of our empirical analysis. To 

do so, we take into account the locations of all the fuel stations that open every day, 

including those that were closed in any part of the period considered. By employing the 

longitude and latitude information for each selling point, the distance between each of 

them and their neighboring fuel stations is obtained through the “geosphere” package 

available in the R software. 

We were interested in discovering the degree of integration of our price series. The 

empirical strategy that we use for retail prices differs from that adopted for wholesale 

prices. The reason for this is that Breusch and Pagan’s (1980) LM statistic indicates that 

retail prices are cross-sectionally dependent (with p-values virtually equal to zero). We 

therefore chose to apply the Breitung and Das (2005) panel unit root test for retail 

prices,
6
 which is robust to the presence of cross-sectional dependence. For wholesale 

prices we apply the unit root test proposed by Phillips-Perron (1988). Additionally, we 

were interested in finding the degree of integration of retail prices when they are 

aggregated at a cross-sectional level. Once more, the Phillips-Perron approach is used 

for these series. As can be seen in Table 2, variables are non-stationary in levels in all 

cases, but after taking first differences the null hypothesis of non-stationarity can be 

clearly rejected. 

[Please insert Table 2 here] 

                                                           

5
 Specifically, the special tax on hydrocarbons, the general tax established by the State, the taxes applied 

by the corresponding region (i.e., Autonomous Community), and value added tax (VAT) have all been 

removed. 

6
 This test is particularly suitable for contexts where the number of temporal observations is greater than 

the number of observations for individuals. 
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We also examine whether there is a stable long-term relationship among our time series. 

We chose Westerlund’s (2007) bootstrap test to check for cointegration between 

disaggregated retail prices and wholesale prices. This approach allows for a large degree 

of heterogeneity and is robust to very general forms of cross-sectional interdependency. 

The first two statistics for cointegration presented in Table 2 are group-mean tests (   

and   ), under the alternative hypothesis that at least one cross-sectional unit is 

cointegrated. The following statistics are panel tests (   and   ) with the alternative 

hypothesis that the whole panel is cointegrated. The set of p-values suggests that 

disaggregated retail prices and wholesale prices are cointegrated for both metropolitan 

areas. Finally, the Phillips-Perron test provides evidence of cointegration between 

aggregated retail prices and wholesale prices. 

2.2 The baseline specification 

Because retail and wholesale fuel price series are integrated of order one and 

cointegrated with each other, the relationship between the two variables can be specified 

as an error correction model (Engle and Granger, 1987). In line with the typical 

empirical model, we assume that retail price variations depend asymmetrically on 

positive and negative changes in the corresponding raw material prices. Unlike most of 

the studies on this issue, we introduce possible heterogeneity of price-setting behavior 

for each of the operating firms (i = 1, 2,…,N): 
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where Δ is the first-differences operator,     is the retail price of the i-th firm at time t 

(t=1, 2, …,T) and     represents the corresponding wholesale price at time t, which is 

common for all operating firms. The long-term relationship in the model (         

    ∑    
 
                  is the error correction. It includes an intercept (  ), a 

time trend ( ) and a set of daily dummies (      to control for the effect on retail prices 

of possible changes in demand associated with each day of the week. The coefficient of 

lagged wholesale prices (   ) can be interpreted as the cost pass-through to retail prices 

for i-th firm. The regression coefficient    associated to the error correction term 
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represents the speed convergence toward the long-run equilibrium. The superscripts + 

and – indicate positive and negative variations in prices. Therefore, price changes are 

      
  and       

  if their respective differences are above zero, and       
  and 

      
  otherwise. Hence, the short-run dynamics are captured by    

  and the    
  

coefficients for price rises, and by    
  and the    

  for price reductions. Finally,     is a 

random disturbance term, which is assumed to be iid. 

Our operational definition of asymmetries will be based on the resulting cumulative 

response functions (CRFs) in accordance with the coefficients in Equation (1).
7
 After a 

shock derived from wholesale price changes in a period  , these functions will describe 

the cumulative retail price adjustment in each period     until the level of pass-

through (   ) is reached. Thus, presence of asymmetries will be supported when the 

CRF to positive shocks differs statistically from the CRF to negative shocks. 

2.3. Empirical methodologies 

By using the collected prices for micro units from the two metropolitan areas, we 

estimate the baseline error correction model represented by Equation (1) through two 

related panel methodologies. First, we follow the MG approach of Pesaran and Smith 

(1995).
8
 Unlike conventional panel estimators, we further recognize that parameters can 

be heterogeneous across individuals. We thereby avoid a potential source of estimation 

bias that, as these authors point out, would remain even for large time and cross-

sectional samples. The MG estimator consists of estimating the error correction model 

separately for each firm. Because the slope coefficients can be heterogeneous, a simple 

arithmetic average of these coefficients will provide information about the general 

behavior of firms that operate in the market. Second, as well as considering 

heterogeneity coming from individual effects and price responses, we also introduce the 

possibility of spatial dependence. That is, pricing behavior of each i-firm can be driven 

by unobserved factors that are common to their neighboring firms. For this purpose we 

apply the MG-CCE estimator developed by Pesaran (2006) in a variant recently 

proposed by Eberhardt and Teal (2012). In practice this econometric extension involves 

augmenting each MG regression with the lagged cross-sectional average of the retail 

                                                           
7
 For a description of how the CRFs are obtained from an error correction specification, see Borenstein et 

al. (1997). 

8
 In Pesaran et al. (1999) we can see an early application of the MG approach under an error correction 

model. 
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prices corresponding to neighboring firms. The relative advantage of the MG-CCE 

estimator is that it gives consistent estimates under a variety of forms of cross-sectional 

dependence (Pesaran and Tosetti, 2011). 

Lastly, we work with aggregated retail prices at a cross-sectional level in order to 

compare with the estimations discussed above. Under this framework there is clearly no 

possibility of considering firms’ heterogeneity behavior and, in terms of Equation (1), 

the subscript i is removed and     is replaced by  ̅   
 

 
∑    

 
   . This restricted model 

is estimated with the OLS procedure, following the standard approach in the empirical 

work on the subject. 

3. Results 

3.1. From disaggregated data 

Table 3 presents the results corresponding to an overview of behavior of firms operating 

in the metropolitan areas of Madrid and Barcelona, derived from disaggregated retail 

prices. The number of lags for Eq. (1) is selected on the basis of the Akaike information 

criterion (AIC), ensuring that the residuals are free of autocorrelation in accordance 

with Wooldridge’s  2002  approach. 

[Please insert Table 3 here] 

We first report estimates based on the MG approach. Then, we ask ourselves whether 

the fuel stations’ pricing response is critically idiosyncratic, which is an essential 

question in this study. For this purpose we test the null hypothesis of parameter 

homogeneity using Swamy’s test. Pricing behavior is heterogeneous regardless of the 

metropolitan area considered according to the results statistics (which are 39,717.21 and 

29,081.01 for Madrid and Barcelona respectively, with p-vales virtually equal to zero). 

This supports the convenience of applying mean group approaches rather than 

conventional panel estimators with homogeneous parameters across individuals. 

Moreover, we find the presence of dependence across fuel stations’ pricing strategy in 

view of results for the Bresuch-Pagan LM test (which are 7,537,491 and 6,415,385 for 

Madrid and Barcelona respectively, with p-vales virtually equal to zero). Hence, in the 

following, we primarily focus in a second set of estimates based on the MG-CCE 

approach. For the MG-CCE we consider the prices set by all competitors existing at 

each moment of time within a determined radius (regardless of whether or not they 
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reported prices at another time during the period studied). Specifically, we show the 

empirical results by taking into account retail prices set by competitors within a 200-

meter radius.
9
 

Some interesting evidence is provided by the estimated long-run coefficients, which are 

quite similar in the two metropolitan areas. The coefficients for dummies, where the 

corresponding variable for Sundays is excluded, are very significant. We reject the null 

hypothesis of equality across all daily effects, which reveal some seasonal patterns in 

pricing behavior. More specifically, retail prices decrease significantly on Mondays and 

climb again at the beginning of the weekend. This outcome is highly consistent with 

recent reports from the Spanish National Energy Commission.
10

 Although the 

hypothesis of complete pass-through is only statistically supported for the Madrid 

metropolitan area, the corresponding estimated coefficients indicated that it is close to 

unity for both areas. That is, a rise (fall) in wholesale fuel prices would imply an 

increase (decrease) of similar magnitude in retail fuel prices. 

The regression coefficient associated to the error correction term ( ) is statistically 

significant and negative regardless of the metropolitan area considered. As expected, 

this outcome predicts that retail prices return toward their long-run equilibrium after a 

wholesale price shock. In particular, the estimated values indicate that deviations from 

such equilibrium are corrected by an adjustment of 12.4% per day in the case of the 

Madrid area and of 11.2% per day in the case of the Barcelona area. These convergence 

coefficients also allow us to approximate the half-life, which summarizes the speed of 

mean reversion. In our case, the number of days needed to reduce a deviation from the 

long-run equilibrium by one half is about six days for both geographical areas. 

A more precise interpretation of the dynamic adjustment process after an oil price shock 

also requires the short-run coefficients to be taken into consideration. Thus, we analyze 

the CRFs, which provide an overview of the adjustment process after a shock until the 

level of equilibrium and, therefore, the long-run pass-through, is reached. Moreover, 

because the short run coefficients are divided according to increases or decreases in 

wholesale fuel prices, from these functions it will be possible to evaluate the presence of 

                                                           
9
 A robustness test was performed using an alternative matrix of distances corresponding to radii of 100 

and 300 meters. The results, which do not differ substantially from those presented in Table 3, are 

available from the authors upon request. 

10
 See, for example, the report for 2013 at the website www.cne.es/cne/doc/publicaciones/cne76_13.pdf. 
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price response asymmetries, as we discussed in Section 2. In the charts of Figure 1, we 

focus on the CRFs and their confidence intervals in accordance with our estimates.
11

 

The charts show that the CRFs are, in general, very similar for the two metropolitan 

areas. The difference between estimated cumulative responses to rises and falls in 

wholesale prices is also represented in these charts. As we can see, differences over time 

are generally positive until the price level equilibrium is reached, indicating that the 

estimated response to an increase of wholesale prices is usually faster. This adjustment 

pattern, known as the “rockets and feathers” phenomenon, should be statistically tested 

to draw conclusions with sufficient confidence. For this purpose we consider 95% 

confidence intervals. The evolution of intervals suggests that this phenomenon prevails 

until the eleventh day after a shock. Thereafter, the difference between cumulative 

responses to positive and negative shocks is not significant. 

[Please insert Figure 1 here] 

3.2. From aggregated data 

The presence of behavioral heterogeneity found in subsection 3.1. clearly suggests some 

preference for estimates from disaggregated data since, otherwise, the estimated 

coefficients may be somewhat biased. However, in order to investigate the extent to 

which our findings are sensitive to typical aggregation over micro units, now we 

analyze time series derived from the cross-sectional average of retail prices. 

The empirical results from the OLS procedure are shown in Table 4. The models 

selected from the AIC are free of autocorrelation according to the Breusch-Godfrey test. 

As in the above long-run estimates, a significant daily seasonality in pricing behavior is 

revealed and the cost pass-through is close to unity for both areas. Additionally, the 

regression coefficient of the error correction term ( ) is statistically significant and 

negative for both metropolitan areas. Now, deviations from the equilibrium between 

wholesale and retail prices are corrected by a factor of between 4% and 6% per day, 

approximately, depending on the geographical zones considered. The estimated time 

taken to reach half-life is about 12 days for the Madrid area and 15 days for the 

Barcelona area. 

                                                           
11

 The CRFs for the basic MG panel methodology are presented for both areas in Appendix A. The graphs 

show that the estimated retail price response after a shock is fairly similar regardless of the panel 

approach applied. 
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[Please insert Table 4 here] 

As in Subsection 3.2, we also take into account the short-run estimates in an attempt to 

better understand the dynamics of price responses and to test for asymmetries. The 

charts of Figure 2 show the CRFs and their corresponding intervals at the 95% 

confidence level. The graphical results are broadly consistent for both metropolitan 

areas. The difference between estimated cumulative responses to positive and negative 

shocks is also represented. Now, although this difference might seem remarkable, we 

cannot reject the hypothesis of price response symmetries. 

[Please insert Figure 2 here] 

3.3 Comparison of results 

Two aspects should be taken into account when, as is usual in this research area, 

aggregated data on individual fuel stations are used: the estimated coefficients are 

potentially biased and the statistical inference can be affected. 

Our results show that cross-sectional aggregation of retail fuel prices may largely 

overstate the dynamic process. On the one hand, we can see that the estimated speed 

toward long-run equilibrium is slower and, then, the estimated time to reach the half-life 

is longer. Specifically, it is extended by about six days for the Madrid metropolitan area, 

and nine days for the Barcelona metropolitan area. On the other hand, we can see how 

data aggregation also increases the short-run dynamics through the larger number of 

selected lags. More specifically, the selected number of lags for wholesale prices goes 

from eight to nine in the final specification of the models for both geographical 

contexts.
12

 

A straightforward comparison of the overall dynamics displayed between disaggregated 

and aggregated data may be made by using the CRFs. Figure 3 shows the CRFs, for 

both types of data, related to the corresponding estimated pass-through in the long term 

where the level of price equilibrium should be reached. By assuming that the micro-

relations are properly specified, divergence between the two dynamics would provide an 

approximation to estimation bias arising from the aggregation. In general, the relative 

cumulative response is lower from the aggregated data and the dynamics toward 

                                                           
12

 The price stickiness also increases in the case of the Barcelona metropolitan area when aggregated data 

are used. 
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equilibrium is amplified over time. Note that this implies, as in the studied cases, that 

the potential difference in price responses may also be artificially expanded over time 

(Figures 1 and 2). 

[Please insert Figure 3 here] 

Although aggregation allows an extension of the differences over time, it does not 

necessarily yield results on asymmetries. In fact, besides the problem related to the 

estimated coefficients, we found that the power of test is considerably lower. A drastic 

reduction in the number of observations available after the aggregation of micro units 

seems to be the main driver of increases in the standard errors of estimated coefficients 

causing, in the end, relatively wide confidence bands in our case.
13

 In other words, we 

must take into account that when data from the micro units were used the number of 

observations was much higher (i.e., 254,700 for Madrid and 166,500 for Barcelona), 

even though the sample size for the aggregated data is fairly standard (i.e., 900 

observations). 

4. Concluding remarks 

Most empirical studies on fuel price responses are based on aggregated data on fuel 

stations and, therefore, the conclusions are founded on the implicit assumption of a 

“representative agent”. In the present paper, we relaxed this standard assumption. 

Unlike others papers in the field, we used a set of daily data for a large number of 

individual fuel stations. We therefore assume that the daily data help to avoid temporal 

aggregation bias. Further, data for micro units allowed us to explore the possible 

improvements of estimations on the empirical approach typically used in this research 

field. The study was based on statistical information from Spanish fuel stations 

operating in the metropolitan areas of Madrid and Barcelona. As these metropolitan 

areas belong to a context for which findings are somewhat inconclusive, the evidence 

offered could also have a special interest for the literature. To work with data for micro 

units we applied two alternative methodologies: Pesaran and Smith’s (1995) mean 

group (MG), and Pesaran’s  2006  mean group with common correlated effects 

estimator (MG-CCE). The results from the two panel methodologies are quite similar. 

However, because we found some evidence of cross-sectional dependence, we opted to 

                                                           
13

 Another reason could be some change in the variance of regressions under aggregation (see, for 

example, Garrett, 2003). 
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focus mainly on the empirical results from the MG-CCE. Moreover, the outcomes for 

both metropolitan areas are broadly consistent. 

We found that the heterogeneity of behavior matters in the specification of our models. 

Thus, as expected from the econometric literature, when the behavior heterogeneity of 

fuel stations is not considered, it would lead to notable bias in fuel price adjustments. 

Specifically, the speed of adjustment toward the equilibrium is artificially slowed down, 

which is consistent with evidence obtained for others products for which price 

transmission has been studied (e.g., Pelzman, 2005; Cramon-Taubedel et al., 2006). 

This result could help to explain the surprising permanence of shocks in many studies in 

this research area. Overstating the time taken to reach the level of equilibrium may, 

understandably, also cause an expansion over time of the possible differences between 

responses to positive and negative shocks. In spite of this, the empirical evidence on 

asymmetries also depends on statistical inference. 

The null hypothesis of symmetry cannot be supported when data for micro units are 

used. More specifically, our results suggested the existence of the “rockets and feathers” 

phenomenon basically for the first week after a shock. However, after aggregation of 

our individual time series, we obtained no evidence of this phenomenon although the 

number of observations available was still within the standard for this type of study. 

This could explain why sometimes the presence of “rockets and feathers” has not been 

unambiguously concluded, even though it could actually be relevant. Hence, panel data 

information not only allows us to consider behavioral heterogeneity, but it also provides 

more degrees of freedom and sample variability to improve the efficiency of the 

corresponding estimates. We hope that this empirical experiment encourages, as far as 

possible, the use of micro data to measure fuel price responses and testing asymmetries. 
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Table 1. Selected papers focused on retail fuel price responses 

Authors Origin of the 

price shock 

Country Time period Frequency Methodology Half-life 

in weeks 

Borenstein et al. (1997) Wholesale US 1986-1992 Biweekly ECM 5.67 

 Crude     8.49 

Galeotti et al. (2003) Wholesale Germany 1985-1997 Monthly ECM 2.50 

  France 1985-2000   3.30 

  Italy    3.50 

  Spain    3.50 

  UK    3.30 

 Crude Germany 1985-1997 Monthly ECM 3.30 

  France 1985-2000   3.60 

  Italy    2.20 

  Spain    2.90 

  UK     11.00 

Radchenko (2005) Wholesale US 1991-2002 Weekly ECM with Markov-switching 17.73 

 Crude     13.84 

Al-Gudhea et al. (2007) Wholesale US 1998-2003 Daily 
ECM with threshold  

cointegration 
15.30 

 Crude     7.60 

Contin-Pilart et al. (2009) Wholesale Spain 1993-1998 Weekly ECM 8.05 

   1998-2004   7.58 

Balaguer and Ripollés (2012) Wholesale Spain 2006-2009 Daily ECM with GARCH 9.00 

Notes: ECM means Error Correction Model and GARCH is Generalized Autoregressive Conditional Heteroskedasticity. The persistence of shock is 

obtained by calculating the half-life of deviations from the long-run equilibrium (i.e., the natural logarithm of 0.5 divided by the value of the adjustment 

coefficient). In papers in which asymmetric long-run speed adjustment is allowed, we have reported the average of both measures for the half-life. 
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Table 2. Unit root and cointegration tests 

 

Metropolitan area of 

Madrid 

 Metropolitan area of 

Barcelona 

Levels First diff.  Levels First diff. 

Unit root test      

Breitung-Das test for disaggregated retail prices -0.023 -27.856
***

  0.027 -28.717
***

 

Phillips-Perron test for wholesale prices -1.488 -26.056
***

  -1.488 -26.056
***

 

Phillips-Perron test for aggregated retail prices -1.605 -20.576
***

  -1.594 -19.849
***

 

Cointegration test      

Westerlund tests (disaggregated retail prices) 

   -5.642
***

  -5.916
***

 

   -95.072
***

  -104.124
***

 

   -110.533
***

  -78.373
***

 

   -113.349
***

  -96.469
***

 

Phillips-Perron test (aggregated retail prices) -8.560
***

  -8.323
***

 

Notes: We denote 
***

, 
**

, 
*
 to indicate the rejection of the null hypotheses (unit root and non-cointegration) 

at the 1%, 5% and 10% significance levels, respectively. The Phillips-Perron test is performed by using 

the optimum lags obtained by the Newey-West procedure, whereas the lag order for the Breitung-Das and 

Westerlund tests are obtained by using the Akaike information criterion. Critical values for the Phillips-

Perron and Breitung-Das tests are based on MacKinnon (1996) and Breitung and Das (2005), 

respectively. The Westerlund tests employ bootstrapped robust critical values based on 500 replications, 

where the Bartlett kernel bandwidth is set according to the               rule. 



20 
 

Table 3. Regression results from cross-sectional disaggregated data 

Coefficients and 

statistics 

Metropolitan area of Madrid  Metropolitan area of Barcelona 

MG MG-CCE   MG MG-CCE  

  0.086
***

 (0.002) 0.078
***

 (0.006)  0.090
***

 (0.002) 0.090
***

 (0.030) 

  0.001
***

 (0.001) 0.001
***

 (0.001)  0.001
**

 (0.001) 0.001
**

 (0.001) 

   -0.003
***

 (0.001) -0.002
***

 (0.001)  -0.002
***

 (0.001) -0.002
***

 (0.001) 

   -0.003
***

 (0.001) -0.002
***

 (0.001)  -0.003
***

 (0.002) -0.003
***

 (0.002) 

   -0.003
***

 (0.001) -0.002
***

 (0.001)  -0.003
***

 (0.001) -0.003
***

 (0.002) 

   -0.001
***

 (0.001) -0.001
***

 (0.001)  -0.001
***

 (0.002) -0.001
***

 (0.002) 

   0.001
***

 (0.001) 0.001
***

 (0.001)  0.001
***

 (0.002) 0.001
***

 (0.002) 

   0.001
***

 (0.001) 0.001
***

 (0.001)  0.002
***

 (0.001) 0.002
***

 (0.001) 

   1.121
***

 (0.003) 1.017
***

 (0.071)  1.116
***

 (0.004) 1.092
***

 (0.030) 

  
  -0.117

***
 (0.004) -0.116

***
 (0.004)  -0.088

***
 (0.006) -0.087

***
 (0.006) 

  
  -0.199

***
 (0.005) -0.198

***
 (0.005)  -0.185

***
 (0.007) -0.184

***
 (0.007) 

  
  -0.039

***
 (0.003) -0.038

***
 (0.003)  -0.035

***
 (0.003) -0.035

***
 (0.002) 

  
  -0.107

***
 (0.004) -0.106

***
 (0.004)  -0.103

***
 (0.004) -0.102

***
 (0.004) 

  
  -0.093

***
 (0.004) -0.093

***
 (0.004)  -0.073

***
 (0.005) -0.073

***
 (0.005) 

  
  -0.019

***
 (0.003) -0.018

***
 (0.003)  -0.023

***
 (0.004) -0.023

***
 (0.004) 

  
  -0.073

***
 (0.003) -0.073

***
 (0.003)  -0.053

***
 (0.004) -0.053

***
 (0.004) 

  
  -0.046

***
 (0.004) -0.046

***
 (0.004)  -0.032

***
 (0.003) -0.032

***
 (0.003) 

  
  -0.093

***
 (0.004) -0.093

***
 (0.004)  -0.080

***
 (0.005) -0.080

***
 (0.005) 

  
  0.004 (0.003) 0.004 (0.003)  0.003 (0.003) 0.003 (0.003) 

  
  -0.024

***
 (0.003) -0.024

***
 (0.003)  -0.022

***
 (0.004) -0.022

***
 (0.004) 

  
  -0.041

***
 (0.004) -0.041

***
 (0.004)  -0.044

***
 (0.005) -0.044

***
 (0.005) 

  
  0.072

***
 (0.003) 0.072

***
 (0.003)  0.065

***
 (0.004) 0.065

***
 (0.004) 

  
  0.113

***
 (0.005) 0.113

***
 (0.005)  0.104

***
 (0.007) 0.103

***
 (0.006) 

  
       0.002 (0.003) 0.002 (0.003) 

  
       0.001 (0.003) 0.001 (0.003) 

  
  0.011

***
 (0.004) 0.011

***
 (0.004)  0.015

***
 (0.005) 0.015

***
 (0.005) 

  
  -0.004 (0.005) -0.004 (0.005)  0.015

***
 (0.006) 0.014

**
 (0.006) 

  
  -0.088

***
 (0.003) -0.087

***
 (0.003)  -0.085

***
 (0.004) -0.084

***
 (0.004) 

  
  -0.108

***
 (0.005) -0.107

***
 (0.005)  -0.110

***
 (0.005) -0.109

***
 (0.005) 

  
  0.168

***
 (0.012) 0.168

***
 (0.012)  0.134

***
 (0.016) 0.135

***
 (0.016) 

  
  0.034

***
 (0.008) 0.035

***
 (0.008)  0.027

***
 (0.009) 0.028

***
 (0.009) 

  
  0.155

***
 (0.005) 0.155

***
 (0.005)  0.133

***
 (0.007) 0.134

***
 (0.007) 

  
  0.051

***
 (0.005) 0.051

***
 (0.005)  0.036

***
 (0.006) 0.036

***
 (0.006) 

  
  0.128

***
 (0.004) 0.127

***
 (0.004)  0.100

***
 (0.006) 0.100

***
 (0.006) 

  
  0.131

***
 (0.007) 0.132

***
 (0.007)  0.097

***
 (0.009) 0.098

***
 (0.009) 

  
  0.109

***
 (0.004) 0.108

***
 (0.004)  0.091

***
 (0.005) 0.091

***
 (0.005) 

  
  0.180

***
 (0.004) 0.180

***
 (0.004)  0.158

***
 (0.007) 0.157

***
 (0.007) 

  
  0.105

***
 (0.003) 0.104

***
 (0.003)  0.089

***
 (0.005) 0.089

***
 (0.005) 

  
  0.173

***
 (0.003) 0.173

***
 (0.003)  0.147

***
 (0.005) 0.147

***
 (0.005) 

  
  0.062

***
 (0.002) 0.061

***
 (0.002)  0.071

***
 (0.004) 0.071

***
 (0.004) 

  
  0.103

***
 (0.003) 0.103

***
 (0.003)  0.099

***
 (0.004) 0.098

***
 (0.004) 

  
  0.149

***
 (0.004) 0.149

***
 (0.004)  0.128

***
 (0.006) 0.128

***
 (0.006) 

  
  0.075

***
 (0.002) 0.075

***
 (0.003)  0.084

***
 (0.003) 0.084

***
 (0.003) 

  -0.113
***

 (0.002) -0.124
***

 (0.009)  -0.111
***

 (0.002) -0.112
***

 (0.003) 

Obs. (N x T) 254,700 254,700  166,500 166,500  

Individuals (N)  283 283   185 185  

           8,846.16 [0.000] 1,327.89 [0.000]  5,168.49  [0.000] 2,204.14 [0.000] 

     = 1 1,711.17 [0.000] 0.05 [0.815]  1,022.45  [0.000] 11.98 [0.001] 

Notes: The standard errors are reported in parenthesis and p-values are presented in brackets. We use 
***

,
 ** 

and
 *

 to indicate significance of the coefficients at the 1%, 5% and 10% levels, respectively. The long-run 

elasticities from the cointegrating relationship are obtained by using the delta method. 
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Table 4. Regression results from cross-sectional aggregated data 

Coefficients and 

statistics 

Metropolitan area of Madrid  Metropolitan area of Barcelona 

OLS  OLS 

  0.078
***

 (0.025)  0.079
***

 (0.028) 

  0.001
**

 (0.001)  0.001
*
 (0.001) 

   -0.003
*
 (0.002)  -0.002

*
 (0.002) 

   -0.003
*
 (0.002)  -0.003

*
 (0.002) 

   -0.003
*
 (0.002)  -0.003

*
 (0.002) 

   -0.001 (0.002)  -0.001 (0.002) 

   0.001 (0.002)  0.001 (0.002) 

   0.001 (0.002)  0.001 (0.002) 

   1.122
***

 (0.051)  1.116
***

 (0.057) 

  
  0.176

***
 (0.054)  0.192

***
 (0.054) 

  
  -0.036 (0.049)  -0.008 (0.048) 

  
  -0.084

*
 (0.054)  -0.067

*
 (0.054) 

  
  -0.070

*
 (0.049)  -0.097

**
 (0.048) 

  
  -0.063 (0.054)  -0.061 (0.055) 

  
  0.013 (0.048)  0.044 (0.047) 

  
  -0.090

*
 (0.054)  0.005 (0.054) 

  
  -0.026 (0.047)  -0.040 (0.047) 

  
  -0.193

***
 (0.054)  -0.198

***
 (0.055) 

  
  0.020 (0.046)  0.029 (0.046) 

  
  0.062 (0.055)  0.068 (0.056) 

  
  -0.071

*
 (0.046)  -0.091

**
 (0.045) 

  
  0.071

*
 (0.055)  0.091

*
 (0.056) 

  
  0.192

*
 (0.048)  0.222

***
 (0.046) 

  
  -0.018 (0.049)  -0.007 (0.050) 

  
  -0.056

*
 (0.046)  -0.061

*
 (0.045) 

  
  0.011 (0.032)  0.015 (0.029) 

  
  -0.027 (0.031)  -0.008 (0.028) 

  
  -0.043 (0.035)  -0.030 (0.031) 

  
  -0.032 (0.035)  -0.035 (0.031) 

  
  0.213

***
 (0.035)  0.188

***
 (0.031) 

  
  0.089

**
 (0.035)  0.096

***
 (0.031) 

  
  0.114

***
 (0.037)  0.111

***
 (0.032) 

  
  0.076

**
 (0.036)  0.063

**
 (0.031) 

  
  0.121

***
 (0.037)  0.098

***
 (0.033) 

  
  0.135

***
 (0.036)  0.119

***
 (0.031) 

  
  0.090

**
 (0.037)  0.080

**
 (0.032) 

  
  0.171

***
 (0.036)  0.160

***
 (0.031) 

  
  0.094

***
 (0.037)  0.070

**
 (0.032) 

  
  0.146

***
 (0.036)  0.130

***
 (0.031) 

  
  0.078

**
 (0.036)  0.078

**
 (0.032) 

  
  0.074

**
 (0.035)  0.076

**
 (0.031) 

  
  0.138

***
 (0.036)  0.112

***
 (0.032) 

  
  0.049

*
 (0.035)  0.060

**
 (0.031) 

  
  0.067

*
 (0.036)  0.046

*
 (0.031) 

  
  -0.003 (0.034)  -0.014 (0.03) 

  -0.057
***

 (0.014)  -0.045
***

 (0.012) 

Obs. (T) 900  900 

           2.70 [0.020]  2.27 [0.046] 

     = 1 5.76 [0.017]  4.09 [0.044] 

Notes: The standard errors are reported in parenthesis and p-values are presented in 

brackets. We use 
***

,
 ** 

and
 *

 to indicate significance of the coefficients at the 1%, 5% and 

10% levels, respectively. The long-run elasticities from the cointegrating relationship are 

obtained by using the delta method. 
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Figure 1. CRFs from disaggregated data (based on MG-CCE) 

a) Metropolitan area of Madrid 

 

 

b) Metropolitan area of Barcelona 
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Figure 2. CRFs from aggregated data (based on OLS) 

a) Metropolitan area of Madrid 

 

 

b) Metropolitan area of Barcelona 
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Figure 3. CRFs related to their corresponding pass-through in the long term 

a) Metropolitan area of Madrid 

 

b) Metropolitan area of Barcelona 
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Figure A1. CRFs from disaggregated data (based on MG) 

a) Metropolitan area of Madrid 

 

 

b) Metropolitan area of Barcelona 
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