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Abstract

I perform a regression analysis to test two of the most famous
heuristic rules existing in the literature about the behavior of the im-
plied volatility surface. These rules are the sticky delta rule and the
sticky strike rule. I present a new specification to test the sticky strike
rule, which allows for dynamics in the implied volatility surface. In
the empirical application I use monthly implied volatility surfaces cor-
responding to the IBEX 35 index. The estimation results show that
the extended specification for the sticky strike rule presented in this
article represents better the behavior of the implied volatility under
this rule. Furthermore, there is not one rule which is the most appro-
priate at all times to explain the evolution of implied volatility surface.
Depending on the market situation a rule may be more appropriate
than another one. In particular, when the underlying asset displays
trend, the sticky delta rule tends to prevail against the sticky strike
rule. Conversely, when the underlying asset moves in range, then the
sticky strike rule tends to predominate.

JEL: G10, C23.



1 Introduction

Options prices are usually quoted using implied volatilities obtained from the

Black-Scholes (1973) option pricing formula. Let C∗

KT−t denote the market

price of a European call with strike price K and time to maturity T − t, on

an asset whose time t price is given by St. The Black-Scholes (1973) implied

volatility Σ, is defined by:

C∗

KT−t = CBS
KT−t (Σ)

where CBS
KT−t is the option price obtained using the Black-Scholes (1973) for-

mula. The implied volatility expressed as a function of the strike and the time

to maturity is known as the time t implied volatility surface: Σt (K,T − t).

In absence of arbitrage opportunities, the put-call parity implies that the

implied volatility of a European call coincides with the implied volatility of

a European put with the same strike and time to maturity. Market implied

volatilities are usually obtained using relatively out-of-the-money calls and

puts. The reason is that these options display higher liquidity.

The assumptions of the Black-Scholes (1973) model imply:

∂Σt
∂T

=
∂Σt
∂K

= 0 (1)

∂Σt
∂t

=
∂Σt
∂St

= 0 (2)

Equation (1) means that the implied volatility surface should be flat, whereas

equation (2) implies that this surface should be static. But since the stock

market crash on October 1987, equity options markets have been character-

ized by a persistent negative dependence of implied volatility with respect to

the strike price. This negative dependence is known as the implied volatil-

ity skew and it has been widely documented in the literature by Heynen
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(1993), Derman and Kani (1994), Dupire (1994), Rubinstein (1994), Du-

mas, Fleming and Whaley (1997), Das and Sundaram (1999) and Derman

(2003) among others. For foreign currencies out-of-the-money puts, as well as

out-of-the-money calls usually exhibit higher implied volatilities than at-the-

money options. In this case the relationship between the implied volatility

and the strike price is known as the volatility smile. This feature has been

documented by Rebonato (1999), Jex, Henderson and Wang (1999), Derman

(2003), Hull (2006) and Daglish, Hull and Suo (2007).

On the other hand, the implied volatility surface displays term structure

with different volatilities for options with different maturities. Stein (1989),

Franks and Schwartz (1991), Heynen, Kemma and Vorst (1994), Heynen

(1995), Avellaneda and Zhu (1997) or Härdle and Schmidt (2000) show evi-

dence of this fact.

Furthermore, the implied volatility surface is not static. It varies stochas-

tically through time generating vega risk. Examples of this feature have been

documented, among others, by Franks and Schwartz (1991), Derman (1999),

Bakshi, Cao and Chen (2000), Rama and da Fonseca (2001), Rama and da

Fonseca (2002) and Daglish, Hull and Suo (2007).

From the previous evidence the following question arises: How does the

implied volatility surface evolve through time? The correct answer to this

question dictates the appropriate method for pricing and hedging derivatives.

There are a number of heuristic rules that attempt to describe the time

evolution of the implied volatility surface. The volatility-by-strike or sticky

strike rule assumes that the implied volatility corresponding to an option

with a given maturity and strike price, is independent of the underlying as-

set price. The volatility-by-moneyness or sticky delta rule assumes that the

implied volatility for a given maturity is a function exclusively of the mon-
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eyness, defined as the ratio of the underlying asset price to the strike price.

In the literature there are several studies that try to determine which rule

represents the evolution of the implied volatility surface best. Derman (1999)

uses quoted options with maturity equal to three months on the Standard

and Poor’s 500 index. His study covers the period September 1997 to Oc-

tober 1998. He finds subperiods where each of the volatility rules appears

to explain the data best. Daglish, Hull and Suo (2007) perform a regression

analysis using monthly implied volatility surfaces during the period June

1998 to April 2002, corresponding to the same equity index. The difference

of this study with respect to Derman’s research is that these authors con-

sider maturities ranging from six months to five years. Moreover, their data

consists of consensus market implied volatility surfaces generated by market

makers in the over-the-counter market. This fact increases the quality of the

data. Daglish, Hull and Suo (2007) conclude that the sticky delta rule rep-

resents the behavior of the implied volatility surface better than the sticky

strike rule1.

In this study I replicate the results of Daglish, Hull and Suo (2007) using

implied volatility surfaces corresponding to the IBEX 35 index. The novel

contribution of this work is the use of a more flexible version to test the sticky

strike rule. This specification allows for dynamics in the implied volatility

and represents better the evolution of the implied volatility surface under

this rule. The empirical results show that the explanatory power of this new

version of the sticky strike rule is quite similar to the explanatory power

of the sticky delta rule. Moreover, the specification for the sticky strike rule

1These authors also consider the square root of time rule. This rule is related to the
extrapolation of implied volatilities for maturities and strike prices for which there is no
market. Since the main objective of this article is to study the evolution of the implied
volatility surface, I will focus on the sticky strike and the sticky delta rules.
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presented in this article, which accounts for dynamics in the implied volatility,

can explain the evolution of the volatility surface in the data better than the

sticky delta rule for some subperiods.

The rest of the paper proceeds as follows. Section 2 presents the volatil-

ity rules. Section 3 analyzes the arbitrage opportunities under both rules.

Section 4 explains the data for the empirical application. Section 5 shows

the specifications used to test the performance of both heuristic rules, as well

as the empirical results. Finally, section 6 offers concluding remarks.

2 The sticky delta and the sticky strike rules

Derman (1999) posits that the implied volatility reflects the market’s view

of several features. The evolution of the underlying asset: does the asset

price move in range or does it exhibit any trend? The realized volatility: it is

stable, increasing or decreasing? The risk premium due to illiquidity. Finally,

the probability that the market assigns to sharp drops in the underlying asset

price. The volatility rules incorporate these elements differently, to generate

a pattern of behavior for the implied volatility surface.

2.1 The sticky delta or sticky moneyness rule

The sticky delta rule postulates that the implied volatility of an option with

a given maturity depends only on the moneyness m = K/S. Mathematically

we have:

Σt (St;K,T − t) = ψt (mt,T − t) (3)

∂ψt
∂mt

< 0

The reason why this rule is known as the sticky delta rule has to do with

the fact that the Black-Scholes (1973) delta depends on the strike and the
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asset price through the moneyness. The intuition behind this rule is that the

at-the-money volatility should remain constant when the underlying asset

price moves.

Note that, under this rule, if the asset price increases (decreases), then

the implied volatility is higher (lower) for all strike prices.

2.2 The sticky strike rule

The sticky strike rule assumes that the implied volatility corresponding to

a given strike remains constant when the asset price moves. Therefore, this

rule postulates that the implied volatility does not depend on the underlying

asset price. But it is important to remark that, under this rule, the implied

volatility can be a function of other stochastic variables. Mathematically the

sticky strike rule is given by the following expression:

Σt (St;K,T − t) = Σt (K,T − t) (4)

∂Σt
∂St

= 0;
∂Σt
∂K

< 0

Importantly, both rules have very different implications for the correct cal-

culation of the sensitivities of option prices. In particular, the delta ∆ of a

European option Ot is given by:

∆ ≡
dOt

dSt
=

∂Ot

∂St
+

∂Ot

∂Σt

∂Σt
∂St

∆ = ∆BS + ν
∂Σt
∂St

where ∆BS and ν are respectively, the delta and the vega of the option in the

Black-Scholes (1973) model. Under the sticky strike rule the delta of the op-

tion matches the Black-Scholes (1973) delta. But under the sticky moneyness

rule, the delta of the option is higher than the Black-Scholes (1973) delta,

for options with positive vega. This fact is especially relevant for the correct
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risk management of options. If we do not calculate the delta consistently

with the evolution of the implied volatility surface, we will have an exposure

to the price of the underlying asset, although under the assumptions of the

model we have a delta-neutral position.

3 Volatility rules and arbitrage opportunities

Notice that the sticky strike rule and the sticky delta rule are heuristic pat-

terns of behavior. Therefore, unlike theoretical models, these rules may not

be arbitrage-free. We consider that an arbitrage opportunity exists when it

is possible to set up a portfolio of zero value today which is of positive value

in the future with positive probability and of negative value in the future

with zero probability.

Assume that the underlying asset price does not exhibit jumps. In this

case, it is theoretically possible to find arbitrage opportunities under both

rules.

For the sticky delta rule, I consider a portfolio of a long European call

and a short European put with the same maturity. I assume the following

relationship between the strike price of the call Kc and the strike price of the

put Kp:

Kp < S < Kc

Moreover, I assume that the portfolio includes a position on the underlying

asset. The quantity of asset held is continuously changed to maintain a

delta-neutral position. This procedure is called dynamic hedging. Changing

the number of assets held requires the continual purchase and/or sale of the

stock. This is called rehedging or rebalancing the portfolio.

If the price of the underlying asset increases, there will be an increase
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of the implied volatility for all strike prices. Since the call will be more at-

the-money than the put, the vega of the call will be higher than the vega

of the put and therefore, we will make a profit. On the other hand, if the

underlying asset price decreases, then the implied volatility will be lower for

all strike prices. Since in this case the vega of the put will be higher than

the vega of the call, it will be possible to make a profit again. This example

shows that, in absence of jumps in the evolution of the underlying asset, it is

possible to set up a delta-hedged portfolio of a short out-of-money put and

a long out-of-the-money call, which allows for arbitrage opportunities under

the sticky delta rule.

For the sticky strike rule, let CtT (K) denote the time t price of a European

call with strike K and maturity T , on the underlying asset with spot price St.

This option satisfies the Black-Scholes (1973) partial differential equation:

rCtT (K) = Θ + (r − q)St∆+
1

2
Σ2S2t Γ (5)

where Θ = ∂CtT (K)
∂t

represents the theta; ∆ = ∂CtT (K)
∂St

is the delta; Γ =

∂2CtT (K)

∂S2
t

denotes the gamma; r is the continuously compounded risk-free

rate; q is the dividend yield and finally, Σ represents the implied volatility

which matches the instantaneous constant volatility corresponding to the

asset price process under the Black-Scholes (1973) model.

Let assume the following geometric Brownian motion process for the un-

derlying asset price, under the real world probability measure P :

dSt
St

= µtdt+ σtdW
P
t

where µt is the drift term, σt is the instantaneous volatility, which may be

stochastic and W P
t is a Wiener process under the probability measure P .

For simplicity, I assume that the continuously compounded risk-free rate r
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and dividend yield q are zero. Let consider a portfolio of a long call and

a position on the underlying asset, so that the portfolio maintains a delta-

neutral position. Therefore, the changes in the value of the portfolio will be

given by the gamma and the theta of the option2. Applying Ito’s lemma to

CtT gives:

dCtT (K) = Θ0dt+
1

2
Γ0S

2
t σ

2
tdt (6)

where Θ0 and Γ0 indicate that theta and gamma depend on the implied

volatility Σ0. Under the assumption of zero continuously compounded risk-

free rate and dividend yield, it is possible to simplify equation (5) to obtain:

Θ = −
1

2
Σ2S2t Γ

Using the previous expression we can rewrite equation (6) as follows3:

dCtT (K) =
1

2
Γ0S

2
t

[
σ2t − Σ20

]
dt (7)

Equation (7) shows a fundamental result. Even when we have a delta-neutral

portfolio, there will be an additional profit or loss, which depends on the

difference between the volatility of revaluation and the realized volatility.

Notice that this result is weighted by the gamma of the option. Therefore,

the impact of the discrepancy between the realized volatility and the implied

volatility will be higher for options with strikes close to the underlying asset

price. Importantly, the result of the equation (7) is independent of the drift

corresponding to the underlying asset price process. This conclusion, which

may seem surprising, is one of the most important consequences of the Black-

Scholes (1973) model.

2I assume that the implied volatility is constant, so that there is no vega risk.
3See Carr (2002) for a similar result when the risk free rate and the dividend yield are

different from zero.
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From equation (7) it is possible to set up arbitrage strategies under the

sticky strike rule. In particular, consider a delta-neutral portfolio Πt, of

positions in the underlying asset, as well as in calls with different strike

prices:

Πt = CtT (K1)−
Γ1
Γ2

CtT (K2)−

(
∆1 −

Γ1
Γ2

∆2

)
St

K1 > K2; Σ1 < Σ2

Applying Ito’s lemma to the previous expression gives:

dΠt =
1

2
Γ1S

2
t

[
Σ22 − Σ21

]
dt

Therefore, we have a strategy with positive theta and without gamma which

leads to a sure profit. Nevertheless, the gamma changes as time passes and

the underlying asset moves. Therefore, it would be necessary to rebalance

the position in options. Given the bid-ask spreads in option prices, it can be

difficult to set up the arbitrage in practice.

4 Data

In the empirical study I use monthly implied volatility surfaces corresponding

to the IBEX 35 index. The data base consists of 45 implied volatility surfaces

during the period February 2004 to October 2007. On each month we have

five maturities, ranging from six months to four years. Moreover, we have

seven values of moneyness, ranging from 80% to 120%. Therefore, a total

of 35 points on the implied volatility surface are provided each month and

the total number of volatilities available is 1575. The data was part of the

month-end pricing service operated by Markit Group Limited. This company

collects monthly implied volatility data from a large number of market dealers

and generates an estimate of the market implied volatility, for each maturity

9



and strike price. Market participants consider implied volatilities provided

by Markit, even more accurate than those generated by brokers. Daglish,

Hull and Suo (2007) use the same data source in their study corresponding

to the Standard and Poor’s 500 index.

Figure 1 shows the implied volatility surface corresponding to the last

month of the sample. The figure reveals the existence of negative volatility

skew, which is most pronounced for near-term options.

80%

95%

105%

120%  0.5 
 1   

 2   
 3   

 4   

10%

13%

16%

19%

22%

25%

28%

Implied 
Volatility

Strike

Maturity (years)

Figure 1: October 2007 implied volatility surface for the IBEX 35 index. Strike
prices are expressed as a percentage of the asset price, while time is expressed in

years.

5 Tests of the volatility rules

To carry out the tests of the volatility rules, I follow Daglish, Hull and Suo

(2007) and consider a second order Taylor series expansion of the volatility

function under each rule. Note that this approach is not consistent with the

no-arbitrage conditions developed by Lee (2004) for the asymptotic behavior
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of the implied volatility at extreme strikes. Therefore, this approach is not

valid to price options with an arbitrage-free parametric specification for the

implied volatility surface. But it is still valid to test which volatility rule

explains better the evolution of the implied volatility surface.

5.1 Sticky delta rule specification

I consider the following expression to test the sticky delta rule:

Σt (St;K,T − t)− Σt (St;St, T − t) = α0 + α1 ln (mt) + α2 [ln (mt)]
2 (8)

+α3 (T − t) + α4 (T − t)2 + α5 ln (mt) (T − t) + εt (K,T − t)

where Σt (St;St, T − t) is the at-the-money volatility for options with time to

maturity T − t and where mt =
K
St

represents the moneyness. Under this

specification we have:

E
[
εt (K,T − t) |mt

]
= 0; mt = (m1, . . .mt)

′

The previous equation shows that the error term is mean-independent of the

available moneyness observations. The specification of equation (8) is known

as the relative sticky delta rule. This version of the sticky moneyness rule,

allows the implied volatility to change through time, but when measured

relative to the at-the-money volatility, the implied volatility depends only on

mt and T − t.

5.2 Sticky strike rule specification

Σt (K,T − t) = γ0 + γ1 ln (K) + γ2 [ln (K)]2 + γ3 (T − t) (9)

+γ4 (T − t)2 + γ5 ln (K) (T − t) + εt (K,T − t)

Under this specification E [εt (K,T − t)] = 0. Notice that in this case, the

randomness of the implied volatility is given exclusively by the error term εt.
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5.3 Extended sticky strike rule specification

Equations (8) and (9) are similar to those used by Daglish, Hull and Suo

(2007) to test the rules of behavior corresponding to the implied volatility

surface. Notice that the sticky strike rule specification of equation (9) as-

sumes that the implied volatility is independent of the asset price. But it

does not take into account that the implied volatility surface may evolve

stochastically through time and may depend on other random variables. In

this paper, I introduce a more flexible specification to test the sticky strike

rule. I denote this version as the extended sticky strike rule and it is given

by the following expression:

Σt (K,T − t) = γ0 + δt + γ1 ln (K) + γ2 [ln (K)]2 + γ3 (T − t) (10)

+γ4 (T − t)2 + γ5 ln (K) (T − t) + εt (K,T − t)

where δt accounts for the effect of some random variables, such as news,

which affect the time t implied volatility surface. Under this specification,

the error term satisfies the following equation:

E
[
εt (K,T − t) | δt

]
= 0; δt = (δ1, . . . δt)

′

Notice that the time effects variable δt allows for parallel shifts in the implied

volatility surface through time, while preserving the term structure, as well

as the volatility skew.

There are several possibilities to model the time effects variable. For

example, it could be possible to express it as a function of some variables

which account for temporal shocks affecting the implied volatility surface. In

this case we would have δt = δ′xt, being δ a vector of parameters and where

the aggregate variables vector xt could include economic indicators, consumer

confidence indicators and variables which account for the evolution of other
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markets such as foreign currencies, credit, interest rates or commodities.

Another possibility might be to consider a time series model for the time

effects variable. For example, Avellaneda and Zhu (1997) use a time series

model to characterize the implied volatility of foreign currency options.

But the fundamental objective of this study is not to model the time

effects variable δt, but to establish a flexible specification to test the sticky

strike rule. When the number of time series observations is small compared to

the total number of observations, the realizations of δt that occur in the sam-

ple can be treated as unknown period-specific parameters to be estimated4.

To this end I specify a set of time dummies5 so that:

δt =

{
0 for t = 1
δ′dt for t = 2, ..., TN

where TN is the total number of time observations, δ = (δ2, ..., δTN )
′ is a

vector of parameters and dt is a vector which takes value one in the t-th

position and zero elsewhere. The set of time dummies afford a robust control

for common aggregate effects.

5.4 Estimation results

To carry out the estimation of the parameters corresponding to the differ-

ent versions of the heuristic rules for the behavior of the implied volatility

surface, I use the method of ordinary least squares and calculate standard

errors robust to heteroskedasticity. Table 1 shows the estimation results cor-

responding to the sticky delta specification of equation (8), while table 2

displays the estimation results for the sticky strike rule of equation (9).

4See Arellano (2003).
5Since I include a constant term in the regression equation, the parameters δi for

i = 2, ..., TN , account for the differential aggregate effect corresponding to observation i-th
with respect to the first observation.
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Table.1: Sticky delta rule

Dependent variable: Σt (St;K,T − t)− Σt (St;St, T − t)
Sample period: February 2004 to October 2007
Number of observations: 1575
Degrees of freedom: 1569
Variable Coefficient Standard error p-value

constant 0.0051 0.0004 0.000
ln (mt) −0.2429 0.0025 0.000

[ln (mt)]
2 0.1006 0.0069 0.000

(T − t) −0.0045 0.0004 0.000

(T − t)2 0.0008 0.0001 0.000
ln (mt) (T − t) 0.0338 0.0008 0.000

Wald test of joint significance: 43452.15 [5]
(0.000)

R2 0.9769
Corrected R2 0.9768

Standard errors and test statistics are robust to heteroskedasticity.

The Wald test is asymptotically χ2 with p-values in parentheses
and degrees of freedom reported in brackets.

Table.2: Sticky strike rule

Dependent variable: Σt (K,T − t)
Sample period: February 2004 to October 2007
Number of observations: 1575
Degrees of freedom: 1569
Variable Coefficient Standard error p-value

constant 11.9878 0.7683 0.000
ln (K) −2.4985 0.1650 0.000

[ln (K)]2 0.1317 0.0089 0.000
(T − t) −0.0590 0.0168 0.000

(T − t)2 −0.0011 0.0005 0.046
ln (K) (T − t) 0.0078 0.0018 0.000

Wald test of joint significance: 733.83 [5]
(0.000)

R2 0.2942
Corrected R2 0.2915

Standard errors and test statistics are robust to heteroskedasticity.

The Wald test is asymptotically χ2 with p-values in parentheses
and degrees of freedom reported in brackets.
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As shown in table 1 and table 2, both specifications are supported by the

data. But the coefficient of determination R2, indicates that the explanatory

power of the sticky delta specification is much higher than the explanatory

power corresponding to the simple version of the sticky strike rule of equation

(9). The results are similar to those obtained by Daglish, Hull and Suo

(2007). In particular, the coefficient of determination for their version of the

sticky strike rule is 0.2672, whereas for the sticky delta rule they obtain a

coefficient determination equal to 0.9493.

Table 3: Extended sticky strike rule

Dependent variable: Σt (K,T − t)
Sample period: February 2004 to October 2007
Number of observations: 1575
Degrees of freedom: 1525
Variable Coefficient Standard error p-value

constant 3.4164 0.3460 0.000
ln (K) −0.5213 0.0746 0.000

[ln (K)]2 0.0177 0.0040 0.000
(T − t) −0.0590 0.0054 0.000

(T − t)2 −0.0011 0.0001 0.000
ln (K) (T − t) 0.0078 0.0006 0.000

Wald test of joint significance: 18108.16 [5]
(0.000)

Wald test of joint significance 11759.32 [44]
of time dummies: (0.000)

R2 0.9521
Corrected R2 0.9505

Standard errors and test statistics are robust to heteroskedasticity.

The Wald test is asymptotically χ2 with p-values in parentheses
and degrees of freedom reported in brackets.

As seen previously, the sticky strike rule postulates that the implied

volatility is independent of the underlying asset price. But the implied

volatility may vary stochastically through time and may depend on other
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random variables. Therefore, the specification of equation (9) may be a bit

restrictive to test the explanatory power of this rule.

Equation (10) posits a more flexible specification to characterize the be-

havior of the implied volatility under the sticky strike rule. Table 3 displays

the estimation results corresponding to the extended sticky strike version

presented in this article. Comparing the corrected coefficient of determina-

tion of tables 1 and 3, we can see that the explanatory power of the extended

sticky strike rule is very close to the explanatory power of the sticky delta

rule.

The Wald test shows that time dummies are jointly significant. Note

that, given the goodness of fit corresponding to the extended sticky strike

rule specification, if we were able to forecast the evolution of δt, it would be

possible to estimate the time evolution of the whole volatility surface quite

accurately.

As said previously, the main objective is not to model the time effects vari-

able δt but to posit an appropriate specification to characterize the evolution

of the implied volatility under the sticky strike rule. Nevertheless, it might

be interesting to devote some time to the interpretation of this variable. The

time effects variable represents temporal shocks affecting the implied volatil-

ity surface in period t. It allows for parallel shifts in the implied volatility

surface through time, while preserving the term structure and the volatility

skew.

Figure 2 shows the evolution of the estimation corresponding to the time

effects variable δt. On the other hand, figure 3 displays the time evolution

of the at-the-money implied volatility for options with six months to matu-

rity. As it is clear from the figures, both variables have a similar pattern of

behavior. This is also true for options with longer-term maturities.
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Figure 2: Estimation of the time effects variable δt in the equation (10).
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Figure 3: At-the-money implied volatility of options with six months to
maturity corresponding to the IBEX 35 index.

If there were no disturbances in the implied volatility, then δt would not

change whereas the at-the-money implied volatility would move along the

length of the skew curve until the new at-the-money strike price. When

there are temporal shocks affecting the implied volatility surface, the at-the-
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money implied volatility displays the effects of these shocks, as well as the

movement along the implied volatility skew. Therefore, the difference be-

tween both variables would allow distinguishing, under the sticky-strike rule,

the shocks effect and the movement along the skew effect in the evolution of

the at-the-money implied volatility.

Derman (1999) posits that the correct choice of the volatility rule for

each moment should depend on our perception of the market’s situation.

Suppose that the underlying asset exhibits trend, that is, it experiments a

significant change in level while preserving the realized volatility. In this

case, in the absence of a change in risk premium or an increased probability

of jumps, the realized volatility will be the key element in the estimation

of the at-the-money implied volatility. Therefore, as the underlying asset

moves it may be appropriate to re-mark the current at-the-money implied

volatility to the value of the previous at-the-money volatility, given that

the realized volatility has not changed. Notice that, in this case, the implied

volatility corresponding to options with a given moneyness remains constant.

Therefore, this leads to the sticky delta rule.

On the other hand, if we assume that the underlying asset has not a clear

trend, then it does not seem appropriate to increase (decrease) the implied

volatility of all strikes when the asset price increases (decreases). Therefore,

in this situation the sticky strike rule seems to be more appropriate.

Figure 4 displays the evolution of the IBEX 35 index during the sample

period. This index has exhibited a growing trend during most of the period.

However the uptrend breaks in 2007. As seen previously, it seems natural

that the sticky delta rule prevails when the underlying asset presents trend.

Therefore, the higher explanatory power corresponding to this rule can be

motivated by the evolution of the index during the analyzed period. I now
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analyze what rule explains the evolution of the implied volatility surface

better during the period December 2006 to October 2007, when the index

does not show a clear trend.
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Figure 4: Evolution of the IBEX 35 index during the period February 2004 to
October 2007. Data source: Bloomberg.

Table 4 shows the estimation results corresponding to the sticky delta rule,

whereas table 5 displays the estimation of the parameter of the extended

sticky strike rule. Both specifications can characterize the evolution of the

implied volatility quite accurately. Nevertheless, the corrected coefficient of

determination corresponding to the extended sticky strike rule is higher than

the corrected coefficient of determination of the sticky delta rule. Therefore,

when the underlying asset does not display a clear trend, the sticky strike

rule seems to represents the evolution of the implied volatility surface of the

IBEX 35 index better than the sticky delta rule.
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Table 4: Sticky delta rule

Dependent variable: Σt (St;K,T − t)− Σt (St;St, T − t)
Sample period: December 2006 to October 2007
Number of observations: 385
Degrees of freedom: 379
Variable Coefficient Standard error p-value

constant 0.0044 0.0006 0.000
ln (mt) −0.2614 0.0029 0.000

[ln (mt)]
2 0.0705 0.0109 0.000

(T − t) −0.0041 0.0007 0.000

(T − t)2 0.0007 0.0001 0.000
ln (mt) (T − t) 0.0423 0.0011 0.000

Wald test of joint significance: 9606.45 [5]
(0.000)

R2 0.9766
Corrected R2 0.9763

Standard errors and test statistics are robust to heteroskedasticity.

The Wald test is asymptotically χ2 with p-values in parentheses
and degrees of freedom reported in brackets.

Table 5: Extended sticky strike rule

Dependent variable: Σt (K,T − t)
Sample period: December 2006 to October 2007
Number of observations: 385
Degrees of freedom: 369
Variable Coefficient Standard error p-value

constant 7.4680 1.2574 0.000
ln (K) −1.2662 0.2610 0.000

[ln (K)]2 0.0525 0.0135 0.000
(T − t) −0.3849 0.0169 0.000

(T − t)2 0.0003 0.0002 0.141
ln (K) (T − t) 0.0408 0.0017 0.000

Wald test of joint significance: 11996.47 [5]
(0.000)

Wald test of joint significance 8136.18 [10]
of time dummies: (0.000)

R2 0.9823
Corrected R2 0.9816

Standard errors and test statistics are robust to heteroskedasticity.

The Wald test is asymptotically χ2 with p-values in parentheses
and degrees of freedom reported in brackets.
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6 Conclusion

It is well known that the implied volatility surface evolves stochastically

through time leading to the existence of vega risk. From the previous fact,

the following question arises: How should the implied volatility surface vary

as markets move? The appropriate answer dictates the correct method for

pricing and hedging derivatives. In this article I perform a regression analysis

to test two of the most famous heuristic rules existing in the literature about

the behavior of the implied volatility surface. Namely, the sticky delta rule

and the sticky strike rule. Since both rules have very different implications

in terms of the correct hedge ratios corresponding to option prices, it is

very important to determine which rule explains better the evolution of the

implied volatility surface. I present a new specification to test the sticky

strike rule which allows for dynamics in the implied volatility. This extended

version of the sticky strike rule allows the implied volatility surface to vary

stochastically through time while preserving the term structure, as well as

the volatility skew.

In the empirical study I use monthly implied volatility surfaces corre-

sponding to the IBEX 35 index during the period February 2004 to October

2007, provided by Markit Group Limited. The estimation results show that

the extended specification for the sticky strike rule presented in this article

represents better the behavior of the implied volatility under this rule. Fur-

thermore, there is not one rule which is the most appropriate at all times to

explain the evolution of implied volatility surface. Depending on the market

situation a rule may be more appropriate than another one. In particular,

when the underlying asset displays trend, the sticky delta rule tends to pre-

vail against the sticky strike rule. Conversely, when the underlying asset
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moves in range, then the sticky strike tends to predominate.
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