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ABSTRACT

This paper analyzes the behaviour of firm size distributions
(FSDs) in relation to the truncation point. In the real
markets, FSD presents numerous small firms and a few
large firms. Many empirical size distributions in economics
and other fields exhibit a power law in the upper tail
(income, city size, firm size). Multiplicative models a la
Gibrat (1931) present FSDs close to lognormal distributions
and with upper tails close to Pareto or Zipf distributions. For
an exhaustive sample of Spanish manufacturing firms, we
show the existence of a non-constant power-law distribution
that depends on the sampling size we consider. Furthermore,
the FSD of employees is more sensitive to firm age than the
FSD of sales.
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1. Introduction

Recently, in the field of Industrial Organization a debate has emerged about
whether firm size distributions are best modelled by a power-law
distribution or a lognormal distribution. Multiplicative models have become
a standard reference in Industrial Organization (Gibrat, 1931). In these
models the evolution of an individual firm follows a sequence of stochastic
multiplicative shocks. The connection between multiplicative processes and
the lognormal distribution was made by Robert Gibrat, who built upon the
work by astronomer Jacobus C. Kapteyn (1903) and the mathematician
Donald McAlister (1879). Kapteyn developed a multiplicative process that
gives rise to an asymptotically lognormal distribution, and MecAlister
described the lognormal distribution around 1879. In his PhD thesis Gibrat
(1931) observed that the firm size distribution (FSD) was close to the
lognormal distribution, and he concluded that firm growth rates follow a
random process.

Several models of proportional growth were subsequently introduced in
economics to explain firm growth rates and market dynamics. In particular,
Simon (1955) and Ijiri and Simon (1977) extended Gibrat’s model by
introducing an entry process in which the number of firms changes and
rises over time. Ijiri and Simon (1977) demonstrated that the largest firms
are close to the Pareto distribution in the upper tail of the FSD.

The aim of this paper is to improve understanding of how FSDs behave in
relation to the power law they are defined by and their relationship with the
sample size. In recent years access to extensive databases containing more
firms, especially small businesses, has facilitated new analytical
perspectives. In the late 1990s, the availability of U.S. Census Department
data on the entire universe of U.S. businesses has given rise to new
approaches (Axtell, 2001; Teitelbaum and Axtell, 2005; Bottazzi et al, 2006).

These studies analyse FSDs in two stages. First, they analyse the shape of
FSDs (in logs) at an aggregated and sectoral level by applying kernel
densities. Second, they observe the differences in the FSDs classified by firm
size and sector. In this second stage, they apply two measures to calibrate
the number of modes and the sectoral concentration. In general, the FSDs
approximate more to a Pareto distribution with an exponent near unity. In
other words, FSDs approach a Zipf distribution, which is very common in
the analysis of the distribution of city sizes (Gabaix, 1999; Eeckhout, 2004).

Some recent examples can be found in Axtell (2001) and Kaizoji et al. (2005).
Axtell (2001) used an exhaustive Business Master File for 1997. He
observed that FSDs are well-approximated by the Pareto distribution with
exponent near unity -the so-called Zipf distribution- throughout the range of
firm sizes. Recently, Kaizoji et al. (2005) used the Bloomberg database of
multinational firms in 1995 and 2003 to analyze FSDs in terms of sales and
total assets of Japanese and US companies. They found that the FSD of US



firms 1s approximately lognormal, in agreement with Gibrat’s model. In
contrast, the FSD of Japanese firms is clearly not lognormal, and the upper
tail follows the Pareto law, according to the Simon model.

In Industrial Organization, Sutton (1997) and Jovanovic (1982) studied the
relation between proportionate growth and size distributions that were not
lognormal. Gabaix (1999) and Blank and Solomon (2000) offer a solution to
the puzzle of city size distribution and show that proportionate growth
processes can generate Zipf’s Law at the upper tail. However, the constant
debate is whether firms are distributed as power laws (e.g. Pareto, Zipf) or
as lognormal (Aitchison and Brown, 1954; Champernowne, 1953; Axtell,
2001; Mitzenmacher, 2004).

Our aim is to determine the power-law relationship between firm rank and
firm size. We apply a rolling sample methodology to analyse the effect of
including small firms in the estimation. In order to do the empirical
calibration we use an extensive database for Spanish manufacturing firms
that compiles information of balance sheets from Spanish Mercantile
Register in 2001 and 2006.

2. Power laws and firm size distribution

Several studies have analysed the relationship between firm rank and firm
size. This literature is related to market structure and firm growth (Steindl,
1965; Ijiri and Simon, 1977; Jovanovic, 1982; Sutton, 1997; Amaral et al.,
1997).

In general, a non-negative random variable X describes a power-law
distribution if the complementary cumulative distribution function (ccdf), or
Pr[X > xl, satisfies

Pr(X>x/~cx®

where constants ¢ > 0 and o> 0.1 It is easy to observe that the Pareto
distribution is a power law that satisfies,

Pr[X > x]= (%ja

for some o >0 and & > 0. Note that Pareto distribution requires X > k. If
falls in the range 0 < & <2, then X'has infinite variance. If & <1, then X also
has an infinite mean. When a=1 this distribution is known as Zipf's Law
(Zipf, 1949). The Zipf distribution is a special case of the Pareto distribution
and presents the usual behaviour of power-law distributions (Richiardi,
2004). However, instead of considering one distribution defining the FSD,
recent empirical literature observes a mixture among lognormal and other
power laws. Gibrat’s model (1931) showed the link between a lognormal
FSD and power laws in both tails. Recently, Solomon and Levy (1996)

! For details, see Mitzenmacher (2004).



showed that a power law can also be obtained by adding a reflection
condition to the Gibrat model (i.e. by assuming that firm size is bounded
from below to a threshold proportional to the average firm size).

Along the same lines, Reed (2003) and Mitzenmacher (2004) observed a
double Pareto FSD. Reed (2003) provided a distribution that is closer to
lognormal for large samples and closer to the Pareto distribution in both
tails for large or small values. He calls this a double Pareto distribution.
Given the empirical literature is not clear if lognormal or power-law
distributions are better models to define the shape of FSD.

In order to analyse the FSD of Spanish manufacturing firms we propose two
approaches. First, we calibrate the Zipf distribution and, second, we analyze
the adjustment of the full sample to lognormal distribution. We can express
the Zipf distribution as,

r=N(I-P(©) =N (57)

where NNV is the number of observations, ris the rank and S'is the firm size
measured in number of employees. Zipf distribution is usually estimated by

ordinary least squares and the regression adopts the following equation,
Inr=K-alnS +e¢

where K and « are the coefficients to be estimated and ¢is a random error.
Depending on ¢, there are three possible results. First, if ais closer to 1 the
FSD is a Zipf distribution. Second, if & is larger than unity the relationship
between firm size and rank is superlinear. In other words, firm sizes
diminish less than the quotient between the largest firm size and the rank
that a firm occupies in the distribution. Third, if «ris smaller than unity, the
relationship between firm size and rank is sublinear. In other words, firm
sizes diminish more than the quotient between the largest firm size and the
rank?2.

3. Rolling sample results for Spanish manufacturing firms

The data for this study is for Spanish manufacturing firms in 2001 and
2006. The database contains information about the balance sheets in the
Spanish Mercantile Register and our sample consists of those firms with
more than two employees. In order to analyse the power law of the FSD, we
consider the number of employees and sales. The results in Table 1 show a
negative relationship between the estimated coefficient and sample size
(da/dN < 0). This means that small samples of large firms yield higher
coefficients (@>1) than large samples that also include smaller firms,

2 In the field of urban systems, Eeckhout (2004) demonstrates that if a variable adopts a
lognormal distribution, the value of the parameter a from the Pareto distribution increases
when the truncation size increases (da/dS > () and decreases when the sample size of
population increases (da/dN < 0). Similar results are obtained by Gonzalez-Val (2006) for
cities and metropolitan areas in the USA during the 20th century.



regardless of the variable (employees or sales). For small samples, the
relationship is superlinear. But at some point of the estimation, the
coefficient is equal to unity; however, when the sample increases, the
parameter decreases. As a consequence, the second largest firm is larger
than half the size of the first. A plausible explanation is that the largest

firms are more homogeneous, while small firms are more heterogenous.3

Table 1. Regression results on Zipf's Law

Employees Sales
2001 2006 2001 2006
o R2 o R2 o R2 o R2
100 1.5496 0.9736 1.5590 0.9805 1.3336 0.9787 1.2847 0.9866
(0.0259)* (0.0223)* (0.0200)* (0.0152)*
500 1.7201 0.9913 1.7310 0.9933 1.3589 0.9956 1.3677 0.9955
(0.0072)* (0.0064)* (0.0040)* (0.0041)*
1000 1.6756 0.9949 1.7262 0.9966 1.3355 0.9975 1.3335 0.9971
(0.0038)* (0.0032)* (0.0021)* (0.0023)*
5000 1.4414 0.9929 1.4690 0.9911 1.1706 0.9932 1.1567 0.9928
(0.0017)* (0.0020)* (0.0014)* (0.0014)*
10000 1.3795 0.9947 1.4101 0.9940 1.0777 0.9910 1.0608 0.9904
(0.0010)* (0.0011)* (0.0010)* (0.0010)*
20000 1.2892 0.9926 1.3314 0.9934 0.9725 0.9868 0.9806 0.9897
(0.0008)* (0.0008)* (0.0008)* (0.0007)*
40000 1.1001 0.9758 1.1638 0.9813 0.8190 0.9713 0.8577 0.9804
(0.0009)* (0.0008)* (0.0007)* (0.0006)*
Total 0.9449 0.9476 0.9697 0.9503 0.6608 0.9131 0.6749 0.9209
(0.0009)* (0.0009)* (0.0009)* (0.0008)*
N 54490 61455 54382 61322
Truncation 49,944 58038 16,997 17311
point

* Significant at 1%.

However, the truncation point differs between both variables and regardless
of the year. Graphs 1 and 2 show how the coefficient decreases when small
firms are added. However, the truncation point differs between employees
and sales. For example in 2001 the coefficient equal to 1 is reached in the
rank position equal to 49,944 for the employees, while it is reached in the
rank position equal to 16,997 for sales.

Graph 2. Estimated parameter of sales

Graph 1. Estimated parameter of employees Spanish manufacturing firms (2006)
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3 In the context of city size, Gabaix (1999a, b) explained this result as the consequence of
economies of scale. First, the largest cities enjoy similar economies of scale, degree of
diversity and productivity, so their city size does not differ very much. Second, the inclusion
of small cities decreases coefficient a. In our case, a crucial variable that may affect firm
size is age. Table A-1 shows how firm age depends on the rank size. In fact, there is a
positive relationship between firm size and age.




The pattern of the parameter of employees and sales may be different
because the FSD of both variables behaves differently. Graphs 3 and 4
report the estimated FSD of the log employees and sales in 2006. We have
added the normal density distribution so that the deviation can be
compared. The two distributions show significant differences. The FSD of
employees differs from the normal density while the shape of the log sales is
much more similar to normal density, although it is slightly biased towards
the right. However, both graphs show that the density in the largest value is
higher than the normal density expected in Zipf's Law. In other words, the
upper tail concentrates a higher density than in the normal density.
Consequently, a group of large firms are performing better that is to be
expected.

Graph 3. FSD (employees)
2006

Graph 4. FSD (sales)
2006
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First of all, the above graphs reveal considerable, widespread heterogeneity
across firms, which produces a skewed FSD. However, we observe
differences between employees and sales (i.e. between corporate
performances and corporate characteristics). Corporate performance seems
to approach more to normal density. Second, the graphs confirm an upward
bias of samples among the smallest and the largest firms (kernel densities
concentrate more probability in the extreme density than in the normal
density).

Table 2. The relationship between the log of the estimated
Pareto exponent and the log of the sample size (2001)
K E | R
2001
Employees 1.4087 -0.1224 0.7989
(0.0026)* (0.0003)*
Sales 1.4205 -0.1515 0.8395
(0.0028)* (0.0003)*
2006
Employees 1.4276 -0.1211 0.8082
(.0024)* (0.0002)*
Sales 1.3273 -.1407 0.8608
(.0023)* (.0002)*
* significant at 1%.




In order to check the relationship between the sample size and the
parameter of rank-size Law, we ran a regression between the estimated

exponent (o) and the sample size (SS). For this analysis we ran the
following equation and present the results in Table 2.

log(oti) =y —0log(SS;) +¢

Table 2 shows that including a larger number of observations using the

rolling sample method negatively affects the estimated exponents (o). The
results confirm our expectation. FSD is greatly affected by sample size. As a
consequence, the validity of Zipf's law depends on the sample size used in a
study and increasing sample size has a negative impact on the parameter of
the power law.

Zipf's Law and firm age

As we have pointed out above, the differences in a between large and small
firms may be because small firms are more heterogeneous than large firms.
For this reason, we may wonder how a variable such as firm age affects the
evolution of the parameter.

Table 3. Regression results on Zipf's Law using number of employees and sales (2001 and
2006)

Employees Sales

2001 2006 2001 2006

More than... o R2 o R2 o R2 o R2

50 years | 1.2152 | 0.9758 1.2450 | 0.9748| 0.8990 | 0.9396| 0.8913 | 0.9385
(0.0082)* (0.0081)* (0.0098)* (0.0092)*

30years | 1.1771 | 0.9739 1.1881 | 0.9732| 0.8788 | 0.9556| 0.8577 | 0.9534
(0.0036)* (0.0031)* (0.0035)* (0.0030)*

20 years | 1.1214 | 0.9692 1.0952 | 0.9660| 0.8295 | 0.9551| 0.7903 | 0.9533
(0.0022)* (0.0018)* (0.0020)* (0.0015)*

10years | 1.0232 | 0.9581] 1.0092 | 0.9558| 0.7467 | 0.9412| 0.7150 | 0.9359
(0.0014)* (0.0011)% (0.0012)* (0.0010)*

5years | 0.9725 | 0.9516 .09884 | 0.9526| 0.6969 | 0.9281| 0.6954 | 0.9295
(0.0011)* (0.0010)* (0.0010)* (0.0009)*

2years | 0.9547 | 0.9494 0.9778 | 0.9514| 0.6789 | 0.9228| 0.6853 | 0.9257
(0.0010)* (0.0009)* (0.0009)* (0.0008)*

* Significant at 1%.

As we expected, there is a positive relationship between the parameter o
and firm age. This confirms the fact that young firms are smaller than Zipf’s
Law would suggest. However, there are differences between the two
variables. First, the variable of employees has a superlinear relationship
that changes into a sublinear relationship. Second, firm sales continuously
show a sublinear relationship regardless of firm age. It seems that firm age
affects the number of employees but not so significantly the distribution of
sales.




Graph 5. Evolution of FSD (employees) by firm age Graph 6. Evolution of FSD (sales) by firm age
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Graphs 5 and 6 show the evolution of FSD with firm age. They reveal two
characteristics. First, FSD evolves towards the right when the oldest firms
are considered. Second, firm age affects the evolution of the FSD much more
in terms of employees than in sales. These results show that there is a rich
statistical structure in firm dynamics. Indeed, there will probably be a
correlation mechanism between FSD and firm age. This mechanism
stabilizes FSD over time.

4. Conclusions

Using the balance sheets of Spanish manufacturing firms, we aim to
analyse the power law defining the FSD of employees and sales. The
significant high values obtained when estimating parameter « indicates
that there i1s no constant ‘power law between firm size and firm rank,
regardless of the variable. In fact, there is a negative relationship between «
and the number of observations in the estimation. Our results are confirmed
by the kernel density of both variables: their upper tail has a greater
density than in the normal FSD, which causes a super linear relationship.

We conclude with several statements. First, the diversity of results obtained
in the literature may reflect differences in sample size. We believe that this
conclusion is in line with much of the theoretical and empirical literature
available on the topic, which points out that including small firms in the
FSD tends to be inversely related to the parameter of the power law.
Second, the different patterns of the largest and the smallest firms may be
the result of the firms’ characteristics (economies of scale, firm age and
productivity levels): the largest firms are more homogeneous than the
smallest ones. Finally, firm age affects the power-law parameter. The
relationship between firm age and the estimated parameter is positive.
However, there are significant differences in the estimation of the FSD of
employees and sales.
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