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Abstract:  

In this paper we studied the existence of the sequential first-location-then-price equilibrium in 

the linear-city model of spatial competition. Using a generic transport cost function which 

generalizes the convex and the concave case, we find that the demand function is always 

connected in the convex case whereas in the concave case this function can be non-connected. 

A crucial change of variable that permit the profit functions of both firms being symmetric 

allows us to give a general result which characterize the exact regions of location pairs for 

which a price equilibrium exist. This solution closes the analysis on the existence of 

equilibrium for the class of linear-quadratic and convex transport cost function.  
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1. Introducción 

The main purpose of this paper is to clarify and extend some important issues 

concerning existence and properties of equilibria in the horizontal differentiation model “a la 

Hotelling”. 

In the classical Hotelling (1929)’s model of product differentiation, two firms and a 

continuum of consumers locate along a main street, consumers make choices based on the 

price of the product plus the transport cost, which depends on the distance to the firm. In this 

setting, the typical equilibrium concept is the sequential (or sub-game perfect) equilibrium, 

where firms first simultaneously locate, and then simultaneously set the price of the product 

which maximize individual profits.  

A deeply explored research issue in this framework has been to analyze the existence 

and uniqueness of the (pure strategy) sequential equilibrium under alternative specifications 

of the transport cost function. The motivation for this was Hotelling (1929)’s initial claim that 

an equilibrium involving minimum differentiation existed under linear transport costs, and 

D’Aspremont et al. (1979) response showing the non-existence of the equilibrium in that 

case, and the existence of a unique equilibrium involving maximum differentiation, if 

transport costs were quadratic in distance. 

The linear-quadratic class of transport cost functions includes the two specifications 

mentioned above. There, transport costs are represented by the function 2( )c d ad bd= + , 

where d is the distance between the consumer and the firm. Under this cost structure, it is well 

known that there exists no (pure strategy) price equilibrium for all the possible locations of 

the firms. For example, Gabszewicz and Thisse (1986) analyze the case where transport costs 

are convex in distance (that is, the case where b> 0), and show that there does not exist a price 

equilibrium for all the possible locations of the firms. In fact, a price equilibrium can exist 

only if firms are sufficiently far one from each other. A crucial assumption of their analysis is 
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the fact that firms locate symmetrically with respect to the centre of the city. Anderson (1988) 

extends the analysis to the case of asymmetric locations, and identifies the pairs of locations 

that do not satisfy the necessary requirements for the price equilibrium existence. As long as 

a> 0, he finds that for any location of one of the firms, there exists some location of the other 

firm for which there is no price equilibrium. Interestingly, Anderson (1988) finds that these 

equilibrium necessary conditions can be satisfied by sufficiently close locations in one 

extreme of the line, a result which clearly contrasts with that of Gabszewicz and Thisse 

(1986). However, Anderson (1988) does not check equilibrium sufficient conditions; in fact, 

his goal is to prove non-existence of a (pure strategies) equilibrium (and afterwards analyze 

the case of mixed strategies), but not to characterize the equilibrium regions (see his 

Proposition 1, p. 485).  

Recently, Hamoudi and Moral (2005) have incorporated the concave specification into 

the debate (b < 0), and have shown that the sequential equilibrium does not exist in that case 

either, particularly when a = -b. Moreover, they have computed the equilibrium regions 

comparing both the concave and the convex cases, and have found that the equilibrium region 

in the concave case is even lower than that of the convex case. These equilibrium regions 

consist of pairs of locations sufficiently far one from each other. From Hamoudi and Moral 

(2005), we might infer that close enough location pairs (the ones shown in Anderson, 1988) 

do not satisfy the sufficient conditions for the existence of the equilibrium. 

More recently, Arguedas and Hamoudi (2008) have studied the existence of the 

sequential first-location-then-price equilibrium in the linear model of product differentiation 

when transport costs are concave linear-quadratic in distance. They analyze the equilibrium in 

the vertical and horizontal differentiation cases. In the former case, they show the existence 

and uniqueness of perfect equilibrium, whereas in the other case they find the necessary and 

sufficient conditions for a price equilibrium to exist.  



 3 

We propose in this paper a variant of the traditional Hotelling model of spatial 

competition. In our formulation, the transport cost structure is the key feature of the model. 

We assume a transport cost function which generalizes at the same time the convex and the 

concave case. However, in order to study perfect Nash price equilibrium, we specify a 

particular transport cost function, the class of linear-quadratic and convex transport cost 

function.  

Our results confirm the general property that the sequential equilibrium fails to exist 

under linear-quadratic transport costs, in line with Gabszewicz and Thisse (1986), Anderson 

(1988), Hamoudi and Moral (2005) and Arguedas and Hamoudi (2008). The reason is that no 

price equilibrium exists for all the possible locations of the firms. As these authors, we 

confirm the existence of price equilibrium when firms locate sufficiently far in the case where 

the indifference consumer is located between the firms. Furthermore, we generalize the 

particular analysis of Anderson (1988), which only considers that one firm is located in the 

extreme of the city, by studying the equilibrium existence at any firm’s location. A price 

equilibrium exists if firms are located sufficiently close one from each other. To the point, our 

main contribution is to characterize the exact regions of location pairs for which a price 

equilibrium exist and, in this sense, we generalize the previous results of these authors.  

The literature on product differentiation is vast, see Brenner (2001) for an overview. 

Several variations of the model not included here refer to the consideration of mixed 

strategies equilibria (but see Osborne and Pitchik, 1987 or Anderson, 1988), alternative 

transport cost specifications (Economides, 1986), the circle model (Anderson, 1986 or De 

Frutos et al., 1999, 2002), alternative consumers densities (Anderson and Goeree, 1997) or 

heterogeneous consumers’ transport costs (Egli, 2007), among others. 

The remainder of the paper is organized as follows. Section 2 describes the model and 

Section 3 presents the demands that firms attract under a general tractor cost function. In 
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Section 4, we obtain the corresponding price equilibrium regions. Section 5 shows the main 

conclusions.  

 

2. The model 

We consider the well known Hotelling’s location model but we remove the 

assumption that the transport cost function is linear in distance. The basic scenario is as 

follows. There are two firms, labelled X and Y, selling an homogeneous product. As it is usual 

in the literature, we assume zero production costs. Firms are located at [ ]1,0, ∈yx  and yx ≤  

and they charge mill-prices px and py, given their locations.  

Consumers are uniformly distributed along the market. Each buys just one unit of the 

industry good at the firm with lower full prices, made up of the product price plus the 

transport cost. Let [ ]1,0∈α  denotes the consumer location in the linear market. The distance 

between the consumer and the seller is defined by || sds −= α  where  yxs ,= .  

we consider a general transport costs function )( sdc , such that 0)(' >sdc  and 

0)('' ≥sdc  or 0)('' ≤sdc  i.e. the function can be convex or concave. In order to study the 

equilibrium we consider the convex linear quadratic transport cost function introduced by 

Gabszewicz and Thisse (1986):1 

 2( ) , ,s s sc d ad bd s x y= + ∀ =  (1) 

 
where a and b are non-negative parameters2.  

 In this model the solution concept is the sequential equilibrium. In the first stage firms 

X  and Y simultaneously chose their locations at x and y, an then simultaneously set the price 

of the product.  

                                                 
1 The concave case (b < 0)  has been studied by Arguedas and Hamoudi (2008). 

2 When a > 0 and b = 0 we have the Hotelling’s classic model with linear transportation costs. 
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3. Transport cost and demand structure 

We can determine the demand addressed to each firm by looking for the indifferent 

consumer i. e. the consumer who faces the same full price of both companies. For this 

consumer:  

 ( ) ( )x x y yp c d p c d+ = +  (2) 

 
We can find an indifferent consumer in regions [ ]x,0 , [ ]yx,  or [ ]1,y  depending on the 

prices and the firms locations. Once we identify this consumer, we immediately know that 

consumers located to his left are served by one firm, while consumers located to his right are 

served by the other. The condition to find the indifferent consumer in those three regions is 

established in the following result: 

Lemma 1. One indifferent consumer is located in: 

(i) [ ]x,0  if and only if  { } { }[ ])()(),(,)()(),( xcycxycMaxxcycxycMinpp yx −−−−∈−  

(ii) [ ]yx,  if and only if [ ])(),( xycxycpp yx −−−∈−  

(iii) [ ]1,y  if and only if   

{ } { }[ ])1()1(),(,)1()1(),( xcycxycMaxxcycxycMinpp yx −−−−−−−−−−∈−  

Proof: 

(i) If the indifferent consumer locates at [ ]x,0  then the consumer located at 0 strictly prefer 

one firm, while the consumer located at x strictly prefers the other. If the consumer located at 

0 prefers firm X, it is because )()( xcycpp yx −<− . But then, the consumer located at x must 

prefer firm Y, and therefore, )( xycpp yx −<− . Consequently, it must be the case that 

)()()( xcycppxyc yx −<−<− , which is feasible if and only if transport costs are strictly 

convex, since )()()( xcycxyc −<− . Conversely, if transport costs are strictly concave in 

distance, we then have )()()( xycxcyc −<− . There can exist an indifferent consumer in this 
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region if and only if )()()( xycppxcyc yx −<−<− , which then means that the consumer 

located at 0 prefers firm Y, while the consumer located at x prefers firm X. Summing up both 

possibilities, we then have that an indifferent consumer exists in region [ ]x,0  if and only if 

{ } { }[ ])()(),(,)()(),( xcycxycMaxxcycxycMinpp yx −−−−∈− . 

(ii) If the indifferent consumer is located at [ ]yx, , then the consumer located at x strictly 

prefers one firm, while the consumer located at y prefers the other. The consumer located at x 

prefers firm X if and only if )( xycpp yx −<− , while the consumer located at y prefers firm 

Y if and only if yx ppxyc −<−− )( . Since )()( xycxyc −<−− , we consequently have 

)()( xycppxyc yx −<−<−− , independently of the shape of transport costs. 

(iii) Using an analogous procedure to that of part (i), we can easily conclude that the 

consumer located at y prefers firm X (Y) and the consumer located at 1 prefers firm Y (X) 

under convex (concave) transport costs, and the condition for the price difference is the 

desired one. ■ 

For future references we denote 1
Lα  the location of the indifferent consumer in region 

[ ]x,0 , Cα  the location of the indifferent consumer in region [ ]yx, , and 2
Lα  the location of the 

indifferent consumer in region [ ]1,y . 

The intuition of this result is simple. Assume, for instance, that an indifference 

consumer is located at 1
Lα . This means that the consumer located at 0 prefers one of the firms, 

while the consumer located at x prefers the other firm. If transport costs are strictly convex in 

distance, the consumer located at 0 prefers firm X, since )()( xcycpp yx −<− , while the 

consumer located at x prefers firm Y, since. Conversely, if transport costs are strictly concave 
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in distance, the consumer that lives at 0 prefers firm Y, while the consumer that lives at x 

prefers firm X.3  

If the indifferent consumer is located at Cα , it is because the consumer located at x 

prefers one of the firms, while the consumer located at y prefers the other firm. In this case, 

independently of the transport costs being either convex or concave, the consumer located at x 

prefers firm X, while the consumer located at y prefers firm Y, and the difference in prices 

yx pp −  must lie in the interval [ ])(),( xycxyc −−− . 

Finally, if the indifference consumer is located at 2
Lα , the consumer located at y 

prefers firm X (Y) under strictly convex (concave) transport costs, while the consumer located 

at x prefers firm Y (X). 

However, depending on the shape of the transport cost function, we can find one or 

two indifferent consumers as we show in the following result: 

Lemma 2. (i) Under strictly convex transport costs, there exists a unique indifferent consumer 

(that can be 1
Lα  or Cα  or 2

Lα ) if and only if [ ])()(),1()1( xcycxcycpp yx −−−−∈− . Else, 

only one firm attracts all the demand. 

(ii) Under strictly concave transport costs, there are two indifferent consumers (that can be 

1
Lα  and Cα , or Cα and 2

Lα ) if and only if either [ ])1()1(),( xcycxycpp yx −−−−−∈−  or 

[ ])(),()( xycxcycpp yx −−∈−  and a unique indifferent consumer ( Cα ) if and only if 

[ ])()(),1()1( xcycxcycpp yx −−−−∈− . Else, only one firm attracts all the demand. 

Proof: 

Under strictly convex transport costs, the following relationship holds: 

(1 ) (1 ) ( ) ( ) ( ) ( )c y c x c y x c y x c y c x− − − < − − < − < − . 

                                                 
3 Note that )()()()( xcycxyc −><−  if and only if transport costs are strictly convex (concave). 
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Therefore, combining this relationship with Lemma 1, there exists one and only one 

indifferent consumer if and only if [ ](1 ) (1 ), ( ) ( )x yp p c y c x c y c x− ∈ − − − − . Else, only one 

firm serves all the demand.  

Under strictly concave transport costs, the following relationship holds:  

( ) (1 ) (1 ) ( ) ( ) ( )c y x c y c x c y c x c y x− − < − − − < − < − . 

Combining this relationship with the result of Lemma 1, note that there exist two indifferent 

consumers when either [ ]( ), (1 ) (1 )x yp p c y x c y c x− ∈ − − − − −  (one at [ , ]x y and another one at 

[ ,1]y ) or when [ ]( ) ( ), ( )x yp p c y c x c y x− ∈ − −  (one at [ , ]x y  and another one at [0, ]x ), and 

only one indifferent consumer when [ ](1 ) (1 ), ( ) ( )x yp p c y c x c y c x− ∈ − − − − located at [ , ]x y . 

In the remaining possibilities, only one firm serves all the demand. ■ 

In the convex case, there can not exist more than an indifferent consumer (located in 

either [ ]x,0 , [ ]yx,  or [ ]1,y , depending on the price differences and the locations of the firms). 

In this case, all the consumers located between 0 and the position of the indifferent consumer 

(i.e., those located to the left of the indifferent consumer), prefer firm X, while the remaining 

consumers prefer firm Y.  

Interestingly, under concave transport costs, if there exists only one indifferent 

consumer, she must be necessarily located in the central region [ ]yx, . In this case, consumers 

to the left of Cα  prefer firm X, while consumers to the right prefer firm Y (at least, those 

consumers located sufficiently close to Cα  ). But moreover, there can be a second indifferent 

consumer in the lateral regions, either the lateral 1, [ ]x,0  or the lateral 2, [ ]1,y . If, for 

example, that second indifferent consumer were located in [ ]x,0  (i.e., in position L
1α ), this 

means that consumers located to the left of L
1α  prefer firm Y. Therefore, the demand of firm Y 

is non-connected, because firm Y attracts the consumers located to the right of  Cα  and those 
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located to the left of L
1α , where CL αα <1 . In other words, firm Y attracts close consumers and 

very far consumers, but not consumers located at an intermediate distance (i.e., those located 

between  L
1α  and Cα ). This can occur only if the price reduction offered by firm Y (as 

compared to that of firm X) is attractive enough to compensate the additional transport costs 

of the furthest consumers (travelling from firm X to firm Y); or, put differently, if the 

additional transport costs of the furthest consumers is small enough, that is, when transport 

costs are sufficiently concave. 

To understand the precise concept of demand connectedness, consider the following 

example. Suppose that the two firms X and Y, and three arbitrary consumers 1, 2 and 3 are 

located along a main street, as depicted in Figure 1. 

 

 

Figure 1. Example of firms and consumer locations 

 

Suppose that consumers 1 and 2 live within walking distance from firms X and Y, 

respectively, whereas consumer 3 lives far from both firms, but closer to firm X. Clearly, firm 

Y can attract consumers 1 and 3 only if the reduction of the price (compared to that of firm X) 

outweighs the additional transport cost from firm X to firm Y. Probably, consumer 1 would 

need a car only if she chooses firm Y while consumer 3 would need it anyway. Consumer 1’s 

additional transportation cost of travelling from firm X to firm Y is then larger than that of 

consumer 3. Thus, the price reduction in firm Y may be attractive only to consumers 2 and 3, 

but not to consumer 1. In this case, the demand of firm Y is non-connected since consumer 1 

(who lives somewhere between consumers 2 and 3) does prefer firm X. 
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This example illustrates a situation that can occur only under concave transport costs: 

consumer 3’s additional transport cost of travelling from firm X to firm Y is smaller than that 

of consumer 1. Under convex transport costs, however, demands are connected always, since 

in that case, consumer 3’s additional cost of travelling from X to Y is larger than that of 

consumer 1. Therefore, Y could attract either consumer 2 only, or consumers 1 and 2, or the 

three consumers, but not consumers 2 and 3 only. 

Given the existence conditions of the indifference consumers we can simultaneously 

derive the demand functions for convex and concave transport cost: 

 

  Convex case Concave case    
  1 1 if 

x yp p R−∞− ∈   

  L
2α  )1( 2

LC αα −+  if L
yx Rpp 2∈−   

 Demand = Cα  Cα  if C
yx Rpp ∈−  (3) 

  L
1α  LC

1αα −  if L
yx Rpp 1∈−   

  0 0 if 
x yp p R+∞− ∈   

 

where 

{ }, ( ), (1 ) (1 )R Min c y x c y c x−∞ = −∞ − − − − −    

{ } { }[ ])()(),(,)1()1(),(2 xcycxycMaxxcycxycMinRL −−−−−−−=  

{ } { }[ ],)1()1(),(,)()(),( xcycxycMinxcycxycMaxRC −−−−−−−=  

{ } { }[ ])1()1(),(,,)1()1(),(1 xcycxycMaxxcycxycMinRL −−−−−−−−−−=  

{ }( ), (1 ) (1 ) ,R Max c y x c y c x+∞ = − − − − − + ∞    

 

As we can observe, independently of the particular expression of the transport cost 

function, the demand function is always connected in the convex case whereas in the concave 

case this function can be non-connected. 
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4. Price equilibrium existence 

In this section we analyze the price equilibrium existence assuming that the transport 

cost function is the linear-quadratic convex function introduced by Gabszewicz and Thisse 

(1986), 2)( sss bdaddc +=  with yxs ,=  and 0, >ba .4 We also evaluate the general demand 

function (3) for this transport cost function, to obtain the particular demand expression that 

we need to analyze the equilibrium existence:5  

 

 

2

1

1,

,
2 2 2

,
2 2( )

,
2 2 2
0,

x y

x y L
x y

x y C
x x y

x y L
x y

x y

p p R
p pa a

p p R
b bz
p pq

D p p R
a bz

p pq a
p p R

b bz
p p R

−∞

+∞

 − ∈
 −
 − − − ∈
 −= − − ∈ + − + − − ∈

 − ∈

 (4) 

   

In this case, ( ), (2 )R z a b q−∞ = −∞ − + −  , ( )2 , ( )(2 )LR z z a bza b q= − − + + −  , 

[ ]( ), ( )CR z a bz z a bz= − + + , [ ]1 ( ), ( )LR z a bz z a bq= + + and [ ]( ),R z a bq+∞ = + +∞ , and where 

[ ]1,0)( ∈−= xyz , i. e. is the distance between the firms, and [ ]2,0∈+= yxq  i. e. is the sum 

of the two locations.  

Interestingly, q  have a particular meaning, since 
2

q
 represents the mean point 

between the locations of the firms. Furthermore, q give us the market share of the firms at 

equilibrium. As we will see, when q > 1, the demand of firm X is greater than the demand of 

firm Y, and viceversa. If q = 1 both firms have the same market share. On the other hand,  z is 

a measure of the differentiation degree in the market.  

                                                 
4 Arguedas and Hamoudi (2008) analyze the concave case. 

5 We can easily deduce the demand of firm Y from 
xy DD −= 1 . 

2

q
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Technically, 1=q  implies that both firms are symmetrically located with respect to 

the centre of the city, 1<q  implies that both firms are asymmetrically located to the left, and 

1>q  implies that both firms are asymmetrically located to the right. This change of variable 

allow us to focus on the analysis of the price equilibrium for 1q ≥ , since the demand function 

of firm X given by expression (4) is symmetric to the demand function of firm Y with respect 

to 1=q . This fact implies symmetry of the profit functions of both firms.  

As we mentioned above, without loss of generality, we consider that the production 

cost of both firms are equal to zero, being the profit function ( ) ( )rsssrss ppDppp ,, =π , where 

( )rss ppD ,  is the demand function of firm S , ,,YXS =  ,, yxs = yxr ,= and rs ≠ . 

Definition 1: For a given firms location( ),x y , a Nash-price equilibrium is the pair ( )N
y

N
x pp ,  

such that: 

(i) N N N
x yp p R− ∈  where 2 1, ,N L C LR R R R= . 

(ii)  ( )arg max ,
s

N N
s s s r

p
p p pπ=  for all ,, yxs = yxr ,= and rs ≠ . 

As Anderson (1988) shows, the profit functions are piecewise concave and continuous 

when  0, >ba . In this case it is not guarantee the existence of price equilibrium for all the 

possible locations of the firms. Thus, it is necessary to find the conditions on firms’ locations 

for the equilibrium existence.  

 

4.1. Price equilibrium in the central region, CR  

We analyze the case when the indifferent consumer is located in [ ]yx, . This implies to 

analyze the central region of the demand function given by (3), that is, for a price difference 

such that )()( bzazppbzaz yx +≤−≤+− . We denote by ( , )C CN N
x yp p  the candidate for a 

Nash price equilibrium.  
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 According to Definition 1, if the pair ( ),C CN N
x yp p  is a Nash-price equilibrium then the 

price difference must belong to the appropriate range. In addition, each price must be the best 

response of the corresponding firm to the price of the other company.  

 In order to determine the equilibrium conditions, we first look for the necessary 

condition to guarantee the point (i) of Definition 1. This is given by the following result: 

Lemma 3: For the existence of Nash price equilibrium in the region CR  it is necessary that  

1( , ) Cz q E∈ , where 1

2 2
( , ) [0,1] (1,2] ( 1), ( 1)

3 3
CE z q z q z q = ∈ × ≥ − ≥ − − 

 
. 

Proof:  

We denote { }( ) ( )C CC N N
s s r s r

R p p z a bz p p z a bz= − + ≤ ≤ + + , , ; ,s x y r x y= =  and s r≠ . 

Assuming that ( ),C CN N
x yp p  is a price equilibrium where: 

 ( ) 1
arg max , ( )(2 )

3
C CN N

x x x y
C

x xp R
p p p a bz qπ

∈
= = + +  (5) 

 ( ) 1
arg max , ( )(4 )

3
C CN N

y y x y
C

y yp R
p p p a bz qπ

∈
= = + −  (6) 

we have: 

2
( ) ( 1)

3
C CN N

x yz a bz p p z q− + ≤ − ⇔ ≥ − −  and 
2

( ) ( 1)
3

C CN N
x yp p z a bz z q− ≤ + ⇔ ≥ − − .■ 

Note that the difference in prices crucially depends on the degree of asymmetry of the 

locations, since 
2

( )( 1)
3

C CN N
x yp p a bz q− = + − . Therefore, C CN N

x yp p= if and only if 1q= .6 

 We now study the point (ii) of Definition 1. This allows us determining the 

equilibrium conditions given by the following two lemmas: 

 

                                                 
6 This corresponds to the case analyzed in Gabszewicz and Thisse (1986). 
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Lemma 4: Given CN
yp , the profit function of firm X is decreasing in 1

LR . 

Proof:  

Here, we denote { }1, ( ) ( )C CN NL
x x y x yR p p z a bz p p z a bz= − + ≤ ≤ + + . Using the expression of 

the profit function of firm X on the region 1
LR , we obtain that  

 ( ) ( )1

1,

1
arg max , [2 (2 ) 3 ] (4 )

6
CN

x x x y
L

x xp R
p p p z b q a a qπ

∈
= = + + + − , 

and the indifferent consumer ( )1,
CN

x yp p xα ≥ . Thus 1xp  does not belong to the interior of 

1
LR , so that we have 1( )CN

y xp z a bz p+ + ≥ . Thus, ( ), CN
x x yp pπ  is decreasing in 1,

L
xR .■ 

 

Lemma 5: CN
xp  is the global maximum of the profit function of firm X is and only if 

31 32( , ) C Cz q E E∈ U , where 

{ }2 2
31 21 22( , ) 3 (4 ( 2) 3 ) 2 (4 ( 2)( 1) 3 (4 )) (4 ) 0C C CE z q E E z b q a z b q q a q a q= ∈ + − + + − + − − − ≥I  

{ }2 2
32 21( , ) ( ( 2) 12 ( 1) 18 ) (6(4 ) ( 2) 0C CE z q E z b q b q a a q q= ∈ + − − + − − − + ≥ ,  

{ }21 1( , ) (4 ) (2 (4 ) 3 ) 0C CE z q E a q z b q a= ∈ − − − + ≥ , 21
CE : complementary set of 21

CE  

{ }2
22 1( , ) 6 (4 ( 1) 3 ) (4 ) 0C CE z q E bz z b q a a q= ∈ − − − + + − ≥  

Proof:  

We assume that ( ),C CN N
x yp p  given by equations (5) and (6) is a price equilibrium. In this case, 

we know by Lemma 3 that 1( , ) Cz q E∈ . From Lemma 4 three cases may arise. In the first one 

(Figure 2), the best reply ( ) ( )2

2,

1
arg max , [2 (2 ) 3 ] (4 )

6
CN

x x x y
L

x xp R
p p p z b q a a qπ

∈
= = + − + −  of firm 

X in 2
LR  does belong to the interior of 2

LR  and must therefore satisfy 
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2 21( (2 )) ( , )CN C
y xp z a b q p z q E− + − ≤ ⇔ ∈  and 2 22( ) ( , )CN C

x yp p z a bz z q E≤ − + ⇔ ∈ . In this 

situation, we have ( ) ( )2 31, , ( , )C C CN N N C
x x y x x yp p p p z q Eπ π≥ ⇔ ∈ . 

 

 
 

Figure 2. 
 

 In the second case (Figure 3) the local maximum in 2
LR  is achieved in 

2 ( (2 ))CN
x yp p z a b q= − + − ( 21

CE  is not satisfied, i. e. 21( , ) Cz q E∈  ). In this situation we must  

verify that ( ) ( )2 32, , ( , )C C CN N N C
x x y x x yp p p p z q Eπ π≥ ⇔ ∈ . 

 

 
 

Figure 3. 
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 In the third case (Figure 4) the local maximum in 2
LR  is achieved in 

2 ( )CN
x yp p z a bz= − + ( 22

CE  is not satisfied, i. e. 22( , ) Cz q E∈  ). In this situation, w always have 

that ( ) ( ), ,C C CN N N
x x y x x yp p p pπ π≥ . 

 
 

Figure 4. 
■ 

 We now have enough tools to prove our first major result: 

Proposition 1: For any (z, q) such that [ ]1,0∈z , [ ]2,1∈q , there is a Nash price equilibrium 

with x yα< < , if and only if 31 32( , ) C Cz q E E∈ U , and whenever it exist, a pure equilibrium is 

uniquely determined by  ( ),C CN N
x yp p  given by (5) and (6). 

Proof: 

From Lemma 5, we know that given CN
yp , ( ) ( ), ,C C CN N N

x x y x x yp p p pπ π≥  if and only if 

31 32( , ) C Cz q E E∈ U . From symmetry between the profit function of firm X and the profit 

function of firm Y, we obtain that ( ) ( ), ,C C CN N N
y x y y x yp p p pπ π≥  if and only 

if ' '
31 32( , ) C Cz q E E∈ U , where '

31
CE  and '

32
CE  are respectively the symmetric versions of 31

CE  and 

32
CE  with respect to 1q= , and for ( ]2,1∈q , we have that 

( ) ( ) ( )' '
31 32 31 32 31 32
C C C C C CE E E E E E=U I U U .■ 
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 From this result, we can easily compute the market share of the firms from the  

equilibrium prices given by (5) and (6). Since q >1, we see that the price and the market share 

of firm X  are greater than the corresponding for the firm Y. For q < 1, we will find the 

opposite result.  

 

423. Price equilibrium in the lateral regions  

Now we study the case when the indifferent consumer is 1
Lα  or L

2α  (i. e. she is located 

in one of the lateral region). Starting from the demand function given by (4), we will search 

the global maximum of the profit function of both firms.  

With respect to the lateral region 2
LR  we have the following result:  

Lemma 6: For any pair ( , ) (0,1] (1,2]z q ∈ ×  such that z > 1- q, there can be no price 

equilibrium with 2
Lα  > y. 

Proof: 

See proof of Lemma 4 of Andersen (1988), using x = (q - z)/2 and y = (q + z)/2. ■ 

 In the case of the lateral region 1
LR , the necessary condition for the fulfilment of the 

first part of Definition 1 is given by the following lemma: 

Lemma 7: For the existence of Nash price equilibrium in the region 1
LR  it is necessary that  

1( , ) Lz q E∈ , where [ ]{ }1 .( , ) 0,1] [1,2]/ 2 ( 1) 3 0LE z q b q bz a= ∈ × − − − ≥  

Proof:  

We now denote { }1, ( ) ( )L LC N N
s s r s r

R p p z a bz p p z a bz= − + ≤ ≤ + + , , ; ,s x y r x y= =  and 

s r≠ . Using the expression of the profit function in the region 1
LR , some simple calculation 

show that: 

 ( ) ( )
1,

1
arg max , (2 )

3
L L

L
x x

N N
x x x y

p R

p p p z a b qπ
∈

= = + +  (7) 
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 ( ) ( )
1,

1
arg max , (4 )

3
L L

L
y y

N N
y y x y

p R

p p p z a b qπ
∈

= = + −  (8) 

 

In this case, the indifferent consumer is 1

(2 )

6
LN a b q

b
α + +=  and must verify 1

LN xα ≤ . This 

condition can hold if and only if 03)1(2 ≥−−− abzqb .■ 

Note that, for fixed locations, q=1, there exist no pure-strategy price equilibrium, since 

1
LN xα > .  

Lemma 8: Given LN
yp , the profit function of firm X is increasing in 2

LR . 

Proof:  

The solution 2xp  of the first-order conditions, 
( )

0
,

=
∂

∂

x

N
yxx

p

pp Lπ
, given by 

( )2

1
(2 ) 2

3xp z b q a= + − , is such that the indifferent consumer 2
L yα ≤ . Thus, 2xp does not 

belong to interior of 2
LR . Consequently, ( )LN

yxx pp ,π  is increasing in 2
LR . ■ 

Lemma 9: Given LN
yp , it is never possible to have the profit function of firm X strictly 

decreasing over CR . 

Proof:  

Here { }( ) ( )L LC N N
x x y x yR p p z a bz p p z a bz= − + ≤ ≤ + + . The maximum of ( )LN

yxx pp ,π  over 

CR  is reached at ( ) ( )arg max , (3 ) 2 (2 )
3

L

C
x x

NC
x x x y

p R

a
p p p a q z bz qπ

∈
= = − + + . In this situation, we 

have always ( )LN C
y xp z a bz p− + ≤ . For any given [ ]1,0∈z , [ ]2,1∈q  it means that ( )LN

yxx pp ,π  

is not decreasing in CR . ■ 

Lemma 10: The optimum of ( )LN
yxx pp ,π  over [ ]∞,0  is reached at LN

xp  if and only if 

3 2( , ) L Lz q E E∈ U , where: 
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{ }2 2 2
3 2( , ) / 3 (4 8 ) (2 (7 4 4 ) 4( 2 ) 9 0L LE z q E bz bq a b z bq a bq b a b abq= ∈ + + + − − + + − ≥  

{ }2 1( , ) / ( 3 )4 ( 1) 6 ( ) 0L LE z q E a z q bz q z a bz= ∈ + − − + ≤ , 2
LE : complementary set of 2

LE  

[ ] [ ]{ }1 ( , ) 0,1 1,2 2 ( 1) 3 0LE z q b q bz a= ∈ × − − − ≥  

Proof:  

We assume that ( )LL N
y

N
x pp ,  given by expressions (7) and (8) is a price equilibrium. In this 

case, we know by Lemma 7 that 1( , ) Lz q E∈ . From Lemma 8 and 9, two cases may arise. In 

the first one (Figure 5), the best reply C
xp  of firm X in CR  does belong to the interior of CR  

and must therefore satisfy 2( ) ( ) ( , )L LN NC L
y x yp z a bz p p z a bz z q E− + ≤ ≤ + + ⇔ ∈ . In this 

situation, we have ( ) ( ) 3, , ( , )L L LN N NC L
x x y x x yp p p p z q Eπ π≥ ⇔ ∈ . 

 
 

Figure 5. 
 

In the second case (Figure 6), the profit function of firm X is increasing in CR  and we 

have 2( ) ( , )LNC L
x yp p z a bz z q E≤ − + ⇔ ∈ , ( ) ( )LLL N

yxx
N
y

N
xx pppp ,, ππ ≥  for any given xp .  
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Figure 6. 
■ 

Proposition 2: For any (z, q) such that [ ]1,0∈z , [ ]2,1∈q , there is a Nash price equilibrium 

with x<α  if and only if ' '
3 2( , ) L Lz q E E∈ U , and whenever it exist, a pure equilibrium is 

uniquely determined by  ( )LL N
y

N
x pp , . 

Proof:  

From Lemma 10, we know that given LN
yp , ( ) ( )LLL N

yxx
N
y

N
xx pppp ,, ππ ≥  if and only if 

3 2( , ) L Lz q E E∈ U . We now turn to the profit function of firm Y. From symmetry between the 

profit function of firm X and the profit function of firm Y, we obtain that 

( ) ( ), ,L L LN N N
y x y y x yp p p pπ π≥  if and only if ' '

3 2( , ) L Lz q E E∈ U , where '
3
LE  and '

2
LE  are 

respectively the symmetric versions of 3
LE  and 2

LE  with respect to q = 1, and for ( ]2,1∈q , we 

have that ( ) ( ) ( )' ' ' '
3 2 3 2 3 2
L L L L L LE E E E E E=U I U U .■ 

 

5. Conclusions 

In this paper we have studied the existence of the sequential equilibrium in the context 

of the traditional Hotelling model of spatial competition. First, we have studied the demand 

function structure using a generic transport cost function which generalizes at the same time 
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the convex and the concave case. We find that the demand function is always connected in the 

convex case whereas in the concave case this function can be non-connected 

In the equilibrium study, we analyze the class of linear-quadratic and convex transport 

cost function. We propose a decisive change of variable that permit that the profit functions of 

both firms being symmetric to respect to the mean point between the locations of the firms. 

This allows us to simplify the analysis, and characterize the exact regions of location pairs for 

which a price equilibrium exist in a general framework. In this sense, our general result closes 

the analysis on the existence of equilibrium for the class of linear-quadratic and convex 

transport cost function.  
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Appendix 

 The following figures correspond to the equilibrium regions for q > 1. For q < 1 the 

equilibrium region are symmetric with respect to q=1.  

 
Figure 7. Equilibrium in the central region when a=1, b=4 

 
 

 
Figure 8. Equilibrium in the lateral 1 region when a=1 b=4 
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Figure 9. Equilibrium regions when a = 1, b = 8 
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