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1. Introduccion

The main purpose of this paper is to clarify andeed some important issues
concerning existence and properties of equilibrithe horizontal differentiation modeh ‘la
Hotelling”.

In the classical Hotelling (1929)’s model of protlgiiferentiation, two firms and a
continuum of consumers locate along a main st@isumers make choices based on the
price of the product plus the transport cost, whilepends on the distance to the firm. In this
setting, the typical equilibrium concept is the wafial (or sub-game perfect) equilibrium,
where firms first simultaneously locate, and thanuitaneously set the price of the product
which maximize individual profits.

A deeply explored research issue in this framewak been to analyze the existence
and uniqueness of the (pure strategy) sequentialiium under alternative specifications
of the transport cost function. The motivation tiois was Hotelling (1929)’s initial claim that
an equilibrium involving minimum differentiation isted under linear transport costs, and
D’Aspremontet al. (1979) response showing the non-existence of thulilerium in that
case, and the existence of a unique equilibriumolinierg maximum differentiation, if
transport costs were quadratic in distance.

The linear-quadratic class of transport cost fumdiincludes the two specifications
mentioned above. There, transport costs are repezséy the functionc(d)= ad+ bd,

whered is the distance between the consumer and the finder this cost structure, it is well
known that there exists no (pure strategy) pricaliggium for all the possible locations of
the firms. For example, Gabszewicz and Thisse (L8B6lyze the case where transport costs
are convex in distance (that is, the case wher@), and show that there does not exist a price
equilibrium for all the possible locations of thenfs. In fact, a price equilibrium can exist

only if firms are sufficiently far one from eachhet. A crucial assumption of their analysis is



the fact that firms locate symmetrically with resp® the centre of the city. Anderson (1988)
extends the analysis to the case of asymmetriditorsa and identifies the pairs of locations
that do not satisfy the necessary requirementghiprice equilibrium existence. As long as
a> 0, he finds that for any location of one of tivenk, there exists some location of the other
firm for which there is no price equilibrium. Ingstingly, Anderson (1988) finds that these
equilibrium necessary conditions can be satisfigdshfficiently close locations in one
extreme of the line, a result which clearly cortsawith that of Gabszewicz and Thisse
(1986). However, Anderson (1988) does not checklibgum sufficient conditions; in fact,
his goal is to prove non-existence of a (pure agjias) equilibrium (and afterwards analyze
the case of mixed strategies), but not to charaetethe equilibrium regions (see his
Proposition 1, p. 485).

Recently, Hamoudi and Moral (2005) have incorpatake concave specification into
the debatel( < 0), and have shown that the sequential equilibrdoes not exist in that case
either, particularly whera = -b. Moreover, they have computed the equilibrium oagi
comparing both the concave and the convex casddyare found that the equilibrium region
in the concave case is even lower than that ofcthrerex case. These equilibrium regions
consist of pairs of locations sufficiently far ofrem each other. From Hamoudi and Moral
(2005), we might infer that close enough locatia@irg (the ones shown in Anderson, 1988)
do not satisfy the sufficient conditions for thestence of the equilibrium.

More recently, Arguedas and Hamoudi (2008) havelistl the existence of the
sequential first-location-then-price equilibrium time linear model of product differentiation
when transport costs are concave linear-quadraticstance. They analyze the equilibrium in
the vertical and horizontal differentiation casksthe former case, they show the existence
and uniqueness of perfect equilibrium, whereahéndther case they find the necessary and

sufficient conditions for a price equilibrium toist



We propose in this paper a variant of the trad@lioHotelling model of spatial
competition. In our formulation, the transport cesucture is the key feature of the model.
We assume a transport cost function which genesla the same time the convex and the
concave case. However, in order to study perfecthNarice equilibrium, we specify a
particular transport cost function, the class ofe#ir-quadratic and convex transport cost
function.

Our results confirm the general property that teguential equilibrium fails to exist
under linear-quadratic transport costs, in linenwabszewicz and Thisse (1986), Anderson
(1988), Hamoudi and Moral (2005) and Arguedas aathéludi (2008). The reason is that no
price equilibrium exists for all the possible Idoas of the firms. As these authors, we
confirm the existence of price equilibrium whemfs locate sufficiently far in the case where
the indifference consumer is located between thasfi Furthermore, we generalize the
particular analysis of Anderson (1988), which oobnsiders that one firm is located in the
extreme of the city, by studying the equilibriumist@nce at any firm’s location. A price
equilibrium exists if firms are located sufficignttlose one from each other. To the point, our
main contribution is to characterize the exact argiof location pairs for which a price
equilibrium exist and, in this sense, we generaleeprevious results of these authors.

The literature on product differentiation is vaste Brenner (2001) for an overview.
Several variations of the model not included heséerr to the consideration of mixed
strategies equilibria (but see Osborne and Pitch#87 or Anderson, 1988), alternative
transport cost specifications (Economides, 1983, dircle model (Anderson, 1986 or De
Frutoset al, 1999, 2002), alternative consumers densities éfgah and Goeree, 1997) or
heterogeneous consumers’ transport costs (Eglif)2@@ong others.

The remainder of the paper is organized as foll&estion 2 describes the model and

Section 3 presents the demands that firms attnadérua general tractor cost function. In



Section 4, we obtain the corresponding price dguuim regions. Section 5 shows the main

conclusions.

2. The model

We consider the well known Hotelling’s location nebdbut we remove the
assumption that the transport cost function isdine distance. The basic scenario is as
follows. There are two firms, labelleflandy, selling an homogeneous product. As it is usual

in the literature, we assume zero production céstsas are located at, yD[O;L] and x<y

and they charge mill-pricgx andpy, given their locations.
Consumers are uniformly distributed along the markach buys just one unit of the
industry good at the firm with lower full prices,ase up of the product price plus the

transport cost. LeUD[O,l] denotes the consumer location in the linear maikes distance
between the consumer and the seller is defined,l;sfa —s whefe s=x,y.

we consider a general transport costs functoyal sich thatc'(d,)> Oand

c'(d)=0 or c"(d,)< 0 i.e. the function can be convex or concave. Irepid study the

equilibrium we consider the convex linear quadratensport cost function introduced by
Gabszewicz and Thisse (1986):
c(d) =ad+ bd, O s x (1)
wherea andb are non-negative parameters
In this model the solution concept is the seqateguilibrium. In the first stage firms
X andY simultaneously chose their locationsxatndy, an then simultaneously set the price

of the product.

! The concave case (b < 0) has been studied byefleguand Hamoudi (2008).

2Whena > 0 andb = 0 we have the Hotelling’s classic model with finéransportation costs.



3. Transport cost and demand structure
We can determine the demand addressed to eachbyirimoking for the indifferent
consumer i. e. the consumer who faces the samepfidé of both companies. For this

consumer:
p.+o(d)=p+ dd) ()
We can find an indifferent consumer in regidfs<], [x,y] or [y.1] depending on the

prices and the firms locations. Once we identifig tonsumer, we immediately know that
consumers located to his left are served by ome, fivhile consumers located to his right are
served by the other. The condition to find the figdent consumer in those three regions is
established in the following result:

Lemma 1. One indifferent consumer is located in:

(i) [0.4] if and only if p, = p, O[Min{c(y - x),c(y) = c(x)}, Max{c(y = x),c(y) = c()}]

(i) [xy] if and only if p, - p, O[-c(y - %), c(y - X)]

i) [y.1] if and only if

p, — p, O[Min{-c(y - x),ct- y) - e~ x)}, Max{-c(y - x),cl-y) -c(L-x)}]

Proof:

(i) If the indifferent consumer locates Eﬁ,x] then the consumer located at O strictly prefer

one firm, while the consumer locatedxatrictly prefers the other. If the consumer lodade

0 prefers firmX, it is becausep, — p, <c(y) —c(x .)But then, the consumer locatedkanhust
prefer firm Y, and therefore,p, — p, <c(y-x .) Consequently, it must be the case that
c(y=x) < p, = p, <c(y) —c(x), which is feasible if and only if transport coste strictly

convex, sincec(y—X) <c(y)—-c(x). Conversely, if transport costs are strictly comcan

distance, we then hav&y) — c(x) < c(y—x . There can exist an indifferent consumer in this



region if and only ifc(y) —c(x) < p, = p, <c(y—x) which then means that the consumer

located at O prefers firnd, while the consumer locatedaprefers firmX. Summing up both

possibilities, we then have that an indifferent stomer exists in regionfo, x] if and only if
p, = P, O[Min{c(y = x),c(y) = (0}, Max{e(y = %), c(y) - c(}].

(ii) If the indifferent consumer is located {ax y], then the consumer located »astrictly
prefers one firm, while the consumer locateg ptefers the other. The consumer locatexl at
prefers firmX if and only if p, = p, <c(y—x), while the consumer located yaprefers firm

Y if and only if —c(y-x) < p,-p,. Since —c(y-x)<c(y-x) we consequently have
—-c(y-x) < p, = p, <c(y—x), independently of the shape of transport costs.

(i) Using an analogous procedure to that of p@nit we can easily conclude that the
consumer located at prefers firmX (Y) and the consumer located at 1 prefers fifrX)

under convex (concave) transport costs, and thelittom for the price difference is the

desired onem

For future references we denate the location of the indifferent consumer in region
[O, x], a® the location of the indifferent consumer in reg[oxny], anda; the location of the
indifferent consumer in regio[y,l].

The intuition of this result is simple. Assume, fmistance, that an indifference
consumer is located at_ . This means that the consumer located at 0 prefeeof the firms,
while the consumer locatedxaprefers the other firm. If transport costs are#yr convex in
distance, the consumer located at O prefers ¥nsince p, — p, <c(y) - c(x ) while the

consumer located atprefers firmY, since Conversely, if transport costs are strictly corecav



in distance, the consumer that lives at O prefems ¥, while the consumer that lives at

prefers firmX.>

If the indifferent consumer is located af, it is because the consumer located at
prefers one of the firms, while the consumer lodattey prefers the other firm. In this case,
independently of the transport costs being eitbavex or concave, the consumer locatexl at
prefers firmX, while the consumer located yatprefers firmY, and the difference in prices

p, — p, must lie in the intervaﬂ— c(y—-x),c(y- x)].
Finally, if the indifference consumer is located @}, the consumer located at

prefers firmX (Y) under strictly convex (concave) transport costsije the consumer located
atx prefers firmy (X).

However, depending on the shape of the transpaitt fomction, we can find one or
two indifferent consumers as we show in the follogwesult:

Lemma 2. (i) Under strictly convex transport costs, theréséxa unique indifferent consumer
(that can bea} or a° or ay) if and only if p, - p, O[c-y) —c(- X), c(y) - c(x)]. Else,
only one firm attracts all the demand.

(i) Under strictly concave transport costs, there two indifferent consumers (that can be
a; and a®, or a®and a;) if and only if eitherp, - p, O[-c(y-x),c-y) —c@-x)] or

p, — P, D[c(y) -c(x),c(y - x)] and a unique indifferent consumén®) if and only if
P~ P, D[c(l— y) —c@-Xx),c(y) —c(x)]. Else, only one firm attracts all the demand.

Proof:

Under strictly convex transport costs, the follogviielationship holds:

cl-y)-cll-Y<-dy- < ¢y X< ¢y €)

® Note thatc(y - x) < (>)c(y) - ¢(x) if and only if transport costs are strictly con\erncave).



Therefore, combining this relationship with Lemma there exists one and only one
indifferent consumer if and only ip, - pyD[o(l— Y- dl- X, Y- € >)] Else, only one

firm serves all the demand.
Under strictly concave transport costs, the follogwelationship holds:
—C(y-X<dl- Y- ql- I< ¢ y- ¢x< C¥y )
Combining this relationship with the result of Lemrh, note that there exist two indifferent

consumers when eithe - p, D[—c( y— X, €1- Y- €1- ﬂ (one at[ x, y] and another one at
[y.1]) or when p, - p,0[d( Y- ¢ 3 ¢ y- ¥ (one at[x y] and another one 40,x]), and

only one indifferent consumer whep, - p, D[c(l— Y- dl- X, Y- ¢ S]Iocated afx yl.
In the remaining possibilities, only one firm ses\al the demanda

In the convex case, there can not exist more thaindifferent consumer (located in
either[O, x], [x, y] or [y,l], depending on the price differences and the looatof the firms).
In this case, all the consumers located betweamQlee position of the indifferent consumer
(i.e., those located to the left of the indifferenthsumer), prefer firnX, while the remaining
consumers prefer firn.

Interestingly, under concave transport costs, #rehexists only one indifferent
consumer, she must be necessarily located in thtead:eegion[x, y]. In this case, consumers
to the left of a© prefer firm X, while consumers to the right prefer firsh(at least, those
consumers located sufficiently closedd ). But moreover, there can be a second indifferent
consumer in the lateral regions, either the Iat&r,a[o,x] or the lateral 2,[y,1]. If, for
example, that second indifferent consumer weretéacan [O, x] (i.e., in positionay), this

means that consumers located to the leftrofprefer firmY. Therefore, the demand of firsh

is non-connected, because fiMrattracts the consumers located to the rightadf and those



located to the left ofr , wherea; <a“. In other words, firnY attracts close consumers and
very far consumers, but not consumers located attarmediate distance (i.e., those located
between a; and a®). This can occur only if the price reduction offérby firmY (as
compared to that of firnX) is attractive enough to compensate the addititraalsport costs
of the furthest consumers (travelling from firkh to firm Y); or, put differently, if the
additional transport costs of the furthest conssm&rsmall enough, that is, when transport
costs are sufficiently concave.

To understand the precise concept of demand caeureess, consider the following
example. Suppose that the two firddsandY, and three arbitrary consumers 1, 2 and 3 are

located along a main street, as depicted in Figjure

Figure 1. Example of firms and consumer locations

Suppose that consumers 1 and 2 live within walldigjance from firmsX andY,
respectively, whereas consumer 3 lives far fronh fiotns, but closer to firnx. Clearly, firm
Y can attract consumers 1 and 3 only if the rednaticthe price (compared to that of fit)
outweighs the additional transport cost from fikro firm Y. Probably, consumer 1 would
need a car only if she chooses fivtwhile consumer 3 would need it anyway. Consumsr 1’
additional transportation cost of travelling frommf X to firm Y is then larger than that of
consumer 3. Thus, the price reduction in fiyfrmay be attractive only to consumers 2 and 3,
but not to consumer 1. In this case, the demarfdrofY is non-connected since consumer 1

(who lives somewhere between consumers 2 and 3)mteéer firmX.



This example illustrates a situation that can o@nly under concave transport costs:
consumer 3’s additional transport cost of travellirom firm X to firm Y is smaller than that
of consumer 1. Under convex transport costs, howelanands are connected always, since
in that case, consumer 3’s additional cost of fiangefrom X to Y is larger than that of
consumer 1. Thereford, could attract either consumer 2 only, or consumeasid 2, or the
three consumers, but not consumers 2 and 3 only.

Given the existence conditions of the indiffereco@asumers we can simultaneously

derive the demand functions for convex and conti@resport cost:

( Convex case Concave case

1 1 if p,—p,0R"
a, at+(Q1-aj) it p-p0R
Demand = < aC© a© if  p -p,OR (3)
alL a“ _alL if Py — pyDRlL
0 0 it p-p,OR"

where

R™ =] ~oo, Min{~c(y- %, €1~ Y- €1~ 3} |

R =[Min{-c(y - x),c@- y) - c@-x)}, Max{c(y - X),c(y) — c(x)}]

R® =[Max{c(y -~ x),c(y) = (0}, Min{~ c(y = X),c(L- y) - 1~ )}

R" =[Min{-c(y-x),c(L-y) — ¢~ x)}., Max{- c(y = X),c(L- y) ~ ¢~ )}]
R =[Max{-q y- 3, @- y- @ §} +x]

As we can observe, independently of the partical@ression of the transport cost

function, the demand function is always connectethé convex case whereas in the concave

case this function can be non-connected.
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4. Price equilibrium existence

In this section we analyze the price equilibriuniseence assuming that the transport
cost function is the linear-quadratic convex funictintroduced by Gabszewicz and Thisse
(1986), c(d,) =ad,+bd? with s=x,y and a,b> 0* We also evaluate the general demand

function (3) for this transport cost function, tbtain the particular demand expression that

we need to analyze the equilibrium existence:

1, p,—p U R”
$2-BB g
D, = %-%, p-p,OR (4)
%Jr%_ px2;)zpy' P~ p,0R
0, p.—p,0O R

In this case, R™ =[-w,~z(a+b(2-0q)]. R =[-zZ(a+b2-0),~-4 ar by],
R®=[-z(a+ b2, £ & by, R =[z(a+ b2, £ & byjjand R™ =[z(a+ bg,+x], and where
z=(y- x)D[O,l], i. e. is the distance between the firms, grrx + yD[O,Z] i. e. is the sum
of the two locations.

Interestingly, g have a particular meaning, sinc% represents the mean point

between the locations of the firms. Furthermayegive us the market share of the firms at
equilibrium. As we will see, wheg > 1, the demand of firfX is greater than the demand of
firm Y, andviceversalf q = 1 both firms have the same market share. Onttrexy band,zis

a measure of the differentiation degree in the etark

* Arguedas and Hamoudi (2008) analyze the concase ca

®We can easily deduce the demand of fiffinom D, =1-D,-

11



Technically, g = 1limplies that both firms are symmetrically locat®dh respect to
the centre of the cityg < Implies that both firms are asymmetrically locatedhe left, and
g >1 implies that both firms are asymmetrically locatedhe right. This change of variable
allow us to focus on the analysis of the price Bguum for q=>1, since the demand function

of firm X given by expression (4) is symmetric to the demfamdtion of firmY with respect

to g =1. This fact implies symmetry of the profit funct®of both firms.

As we mentioned above, without loss of generalitg, consider that the production
cost of both firms are equal to zero, being thdipfonctionz,(p,, p,) = p.D.(p.. p,), where
D.(p.. p,) is the demand function of fir®, S=X,Y, s=x,y, r=x,y ands#r .

Definition 1: For a given firms locatiof, y), a Nash-price equilibrium is the pa(pi“, p;“)
such that:

(i) py - py DR whereR" =R, R, R.

(i) pl =arg maxns( P p’r“) forall s=x,y, r=x,yands#r.

S
Ps
As Anderson (1988) shows, the profit functions @iezewise concave and continuous

when a,b> Q In this case it is not guarantee the existencprick equilibrium for all the

possible locations of the firms. Thus, it is neeegdo find the conditions on firms’ locations

for the equilibrium existence.

4.1. Price equilibrium in the central region, R®

We analyze the case when the indifferent consusnlecated ir{x, y]. This implies to
analyze the central region of the demand functieergby (3), that is, for a price difference
such that-z(a+bhz) < p, - p, < z(a+bz ) We denote by(p;°, p;¢) the candidate for a

Nash price equilibrium.

12



According to Definition 1, if the pai(pi\“:, pyNC) is a Nash-price equilibrium then the

price difference must belong to the appropriatgeann addition, each price must be the best
response of the corresponding firm to the pricthefother company.
In order to determine the equilibrium conditionge first look for the necessary

condition to guarantee the point (i) of Definiti@nThis is given by the following result:

Lemma 3: For the existence of Nash price equilibrium in tegion R® it is necessary that
c 2 2
(z, )0 E°, whereE; :{(z, q)D[O,l]X(l,ZJ/ L>§ (1), 2 "3 (& 1)}.

Proof:

We denote RC={p /plc -7 a+ bj< ps §F+ ¢a By, s=xyr=xy and s#r.

r

Ne
y

Assuming tha1( ple, p ) Is a price equilibrium where:

1 ,

p)< =argmaxr, ( p, B ) == @+ bz)(2 q (5)
pORE 3
1

p)c =argmaxr, ( pif .p,)== @+ bz)(4 q (6)
py 3

we have:
2 " " 2
—z(atb)< pe - ¢ = 2—5( ¢1) and p° - pj° < Z at+ by 2—5( 1) .m
Note that the difference in prices crucially depeod the degree of asymmetry of the
locations, sinceplc — pc =§(a+ b2( g-1). Therefore,p = p;\'c if and only if g=1.°

X y

We now study the point (ii) of Definition 1. Thiallows us determining the

equilibrium conditions given by the following twerhmas:

® This corresponds to the case analyzed in Gabszewit Thisse (1986).
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Lemma 4: Given pg‘c , the profit function of firm X is decreasing R} .
Proof:

Here, we denoteR, —{ Px/ pjc-Zat bis ps fF+ ¢ a bk. Using the expression of

the profit function of firmX on the regionR", we obtain that

b, =argma, (p, A )= =(z[2b(2 q¥ 3aF a4 q),
pxlj%x 6

and the indifferent consume!( Pyt py°)2 X. Thus p, does not belong to the interior of

R, so that we havep)® + z(a+ by > . Thus,ﬂx(px, pyC) is decreasing iR}, .m

Lemma 5. p}c is the global maximum of the profit function afrfiX is and only if

(z,9 0 E,U E,, where

(ZADENE/32(4la2-33244Ka2)(alr 344 & & P [

B =
E,={(zdUE/ {6 a2’ -12 ¢ I+ 189 46(4 & (4 D= P,
ES,={(z 00 E/d4- - £21¢4- 9+ 3 3= ., E5: complementary set d&;,
E,={(z Q0 E/-6bi- taba)+3 % & ¢

Proof:

We assume tha(tp;“C, p§‘°) given by equations (5) and (6) is a price equilifor. In this case,

we know by Lemma 3 thaz, q)0 E°. From Lemma 4 three cases may arise. In thedirst

(Figure 2), the best reply,, = arg maxnx( P, ,p§‘°)=%( z[2b(2+ q) 3a} a(4 g) of firm
pXDR%'x

X in R does belong to the interior ofR; and must therefore satisfy

14



ple - Z{a+ (2- Q)< B, = (290 B and p,<pl-Zar by (z¥0 E. In this

situation, we haveTX(pQ‘C, 5‘6)277)(( Py 5‘6) - (z90 E.

7| 2 1y |

oA
TP LBy |

s
fxlpﬂ’py |

po-mailgl g » —lat) r Pl pmey P,

Figure 2.

In the second case (Figure 3) the local maximum Rh is achieved in

P, = P,° — A a+ 2- q)(Ej, is not satisfied, i. e(z, )0 E, ). In this situation we must

verifythatﬂx(pL“C, ;‘C)Zﬂx( Py p';‘C) - (z 90 E.

Flp.p.|

AP Lp

IR P T ] ¥ —la+iE) ¥ P T T e =g px

Figure 3.
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In the third case (Figure 4) the local maximum R, is achieved in
P, = Py — 4 a+ b (EZ, is not satisfied, i. e(z, )0 E, ). In this situation, w always have
thatﬂx(pXNC, ;‘C)znx( P, §‘6)

FAp.p

T LE

= = 0 ¥ —matiE) ¥ P +mathE) —clatg)

Figure 4.

We now have enough tools to prove our first megsult:

Proposition 1: For any(z, g such thatzD[O,l], qD[lZ], there is a Nash price equilibrium
with x<a <y, if and only i{z, 0 E,;U E,, and whenever it exist, a pure equilibrium is
uniquely determined b)( ple, 5‘0) given by(5) and(6).

Proof:

Ne

From Lemma5, we know that givenpy®, nx(pL\‘C, pyC)an( P B,

) if and only if

(z,9 0 E,U E,. From symmetry between the profit function of fin and the profit

N

function of firm Y, we obtain that ny(prC, ;

)2 ny( ple, py) if and only
if (z,O E; U E;,, where E; and E;; are respectively the symmetric versionsEff and

ES,  with respect to Qg=l, and  for qD(lZ], we  have  that

(ESUES)N(ESUES)=(ESU ES) =

16



From this result, we can easily compute the madtetre of the firms from the
equilibrium prices given by (5) and (6). Since q wk see that the price and the market share
of firm X are greater than the corresponding for the fifmiFor q < 1, we will find the

opposite result.

423. Price equilibrium in the lateral regions
Now we study the case when the indifferent consumet or a; (i. e. she is located

in one of the lateral region). Starting from then@dad function given by (4), we will search

the global maximum of the profit function of boimis.

With respect to the lateral regid® we have the following result:
Lemma 6: For any pair(z g U(0,1]x (1,2] such that z > 1q, there can be no price
equilibrium with a; >v.
Proof:
See proof of Lemma 4 of Andersen (1988), usirg(q - 2/2 andy = (q + 2)/2. m

In the case of the lateral regid®, the necessary condition for the fulfilment of the
first part of Definition 1 is given by the followgnlemma:
Lemma 7: For the existence of Nash price equilibrium in tegion R" it is necessary that
(z. 9O E, whereE}| ={(z 9 0[0,1]x[1,2]/ D - 1)~ dz- & §}.
Proof:
We now denote RfS:{ps/ p-—Za+r bi< ps P+ g a t)k, s=xy r=xy and
s# r. Using the expression of the profit function i tregiorR", some simple calculation

show that:

N :argmaxnx(px, D'L)=?1)) Z a+ b(2+ q) (7

X L
PORx

17



1
py: =argmaxr, (¢ .p,) =54 a b+ q) (8)

PRy

a+b(2+ Q)

In this case, the indifferent consumer dg" :T and must verifg* < x. This

condition can hold if and only i2b(q—-1) -3bz-a> &

Note that, for fixed locations, g=1, there existpuve-strategy price equilibrium, since
a >x.
Lemma 8: Given pg‘L , the profit function of firm X is increasing iR; .

Proof:

a7z (p., P )

The solution p,, of the first-order conditions, 3
Py

=0, given by

z(K(2+ g-24, is such that the indifferent consumet <y. Thus, p,,does not

Wl

pr =

belong to interior ofR; . Consequentlynx(px, pS‘L) is increasing iR, . m

Ny

Lemma 9: Given p,*, it is never possible to have the profit functiohfirm X strictly

decreasing oveR°®.
Proof:

Here R® ={ px/ p—Zatbys ps P+ ga bk. The maximum ofﬂx(px,p;“) over

y

R® is reached atp =arg maxnx( P, , Q‘L) :%( a(3- z)r 2bz(2 g). In this situation, we

nOR
have alwaysp;" - z(a+ b3 < j. For any givenzO[01], qO[1,2] it means thawx(px, pyNL)

is not decreasing ilR®. m

Lemma 10: The optimum of77x(px,p§“) over [O,oo] is reached atp): if and only if

(z,9O E U E, where:

18



E:={(zdOE/3bZ(4bgq a8 b+ @ bff a4 bgd p 4(+a2% 9 dmy
E, :{(z QUE/dz#394bt gl)-6 ¢a bz (} E, : complementary set df,

Er ={(z d0[0.]x[13/ D 1 Dz & P

Proof:

We assume thaﬁpXNL,pyL) given by expressions (7) and (8) is a price ewilm. In this
case, we know by Lemma 7 th@, )0 E . From Lemma 8 and 9, two cases may arise. In
the first one (Figure 5), the best repty of firm X in R® does belong to the interior &°
and must therefore satisfyp: —z(a+bl< < -+ ¢a Bz- (,2)§ ,L In this

situation, we haveTX(pQ‘L, pyL)znx( o, p';‘L) - (z90 E.

rip.p |

Foomlpadidgl) po-mladiE) ? Fo4maddz] ¥ —sloedg) ',

Figure 5.

In the second case (Figure 6), the profit funcodfirm X is increasing inR® and we

have pl < p - Z a+ by = ( z 30 E 7 (pM. p}" )2 72(p,. p)" ) for any givenp, .

19



TAp.p |

Bo-matd (24 ) p-Eletha) potEaHE] p po-masdg) L

Figure 6.
|

Proposition 2: For any g, g) such thatzD[O,l], qD[lZ], there is a Nash price equilibrium
with @ <x if and only if (z, 0 E"U E-, and whenever it exist, a pure equilibrium is
uniquely determined b)(pl“t, §'L)

Proof:

Ny
y

From Lemma 10, we know that givep)", ﬂx(prL,p)’,“L)z 7Tx(px, ) if and only if
(z,O E U E. We now turn to the profit function of fird. From symmetry between the
profit function of firm X and the profit function of firmY, we obtain that
ny(p'x“L, S‘L)zny( e py) if and only if (zOE"UE", where E- and E,- are

respectively the symmetric versionsBf and E} with respect t@ = 1, and forqC (12], we

have that{ E; UE; )N (EfUEr)=(EUE ) m

5. Conclusions
In this paper we have studied the existence oséggiential equilibrium in the context
of the traditional Hotelling model of spatial coniien. First, we have studied the demand

function structure using a generic transport cascfion which generalizes at the same time

20



the convex and the concave case. We find thateéheadd function is always connected in the
convex case whereas in the concave case this dnnzdin be non-connected

In the equilibrium study, we analyze the classrmdar-quadratic and convex transport
cost function. We propose a decisive change obbéithat permit that the profit functions of
both firms being symmetric to respect to the meaintpbetween the locations of the firms.
This allows us to simplify the analysis, and chagaze the exact regions of location pairs for
which a price equilibrium exist in a general franoekv In this sense, our general result closes
the analysis on the existence of equilibrium foe ttlass of linear-quadratic and convex

transport cost function.
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Appendix
The following figures correspond to the equilibriwegions for g > 1. For q < 1 the

equilibrium region are symmetric with respect td.g=

1_

T
0 1 2

)
Figure 7. Equilibrium in the central region when abi4

. P

T
0 1 2

)
Figure 8. Equilibrium in the lateral 1 region wherlld=4
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T
1

g
Figure 9. Equilibrium regions whena=1,b =8
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