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Abstract

We consider a dynamic financing problem of a firm subject to moral hazard prob-
lems. With respect to the existing literature (e.g. as Clementi and Hopenhayn [2] and
Quadrini [12]), we enrich the model by introducing durable capital and a stochastic
liquidation value. The existence of durable capital allows us to make predictions based
on the firm size, independently of age, while the stochastic liquidation value makes
it possible to have liquidation with positive probability under the first best. We find
that a higher level of capital decreases the probability of liquidation, increases future
size and reduces the average return and volatility of the firm. Also, under certain
parameter values a stochastic liquidation value makes it possible to achieve the first
best. The results are broadly in agreement with the empirical results on the effects of
firm size.

1 Introduction

This paper considers the problem of designing an optimal financial contract between an
entrepreneur and a financier in a multi—period framework. The empirical literature has
highlighted that the investment choices of firms frequently depend on the availability of
internal funds (see Hubbard [8] for a survey). Moreover, as emphasized by Cooley and
Quadrini [3], this dependence diminishes with both age and size. These results are usually
explained by the existence of financial constraints for the firms, constraints which appear
independently of their investment opportunities.

Recent theoretical models have explored the causes and consequences of financing con-
straints. Cooley and Quadrini [3], for instance, show that exogenous borrowing constraints
and persistent shocks can generate the kind of relationship between age and growth of the
firm that we find in the empirical data. Similarly, Lorenzoni and Walentin [9] analyze
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a model with limited enforcement in which a continuum of firms are subject to aggre-
gate economy-wide shocks and can issue state-dependent securities. However they do
not analyze the optimal multi-period financial contract that may result from bilateral
negotiations.

Other research has analyzed the design of optimal dynamic financial contracts, trying
to obtain financing constraints as part of an optimal contract. Borrowing constraints
can appear endogenously because of information asymmetry or limited enforcement of
contracts, and we focus on the first case1. The main theme of this literature is that
financing constraints are an optimal way to provide incentives to the borrower. The
incentives take the form either of a threat to transfer control (including liquidation), as
in Kiyotaki and Moore [10] and DeMarzo and Fishman [5], or a threat to reduce future
financing (see e.g. Gromb [6]). Our model builds on the work of Quadrini [12] and, more
closely, Clementi and Hopenhayn [2], where both types of threat are used. Their emphasis
is on the importance of financing constraints as determinants of firm dynamics, especially
size, growth and survival. They develop a theory of endogenous financing constraints as
part of the optimal design of a lending contract under asymmetric information and they
show that in an optimal financial contract the amount of investment and the value of
equity increase with high revenue shocks and decrease with low ones. The sensitivity of
equity value to revenue shocks provides incentives to the entrepreneur to reveal the true
value of the shock. Financing constraints tend to disappear when the value of equity
becomes sufficiently large, which in turn happens as the firm approaches the optimal size.

We enrich the model in two ways. First, we assume that capital is durable. In our
model capital depreciates at a rate 1 − d, with d ∈ [0, 1], and it can be augmented each
period by new investment or diminished by selling part of the existing capital. In the
Clementi-Hopenhayn model, the working capital invested at period t depreciates com-
pletely at the end of the period, that is d = 0. Introducing durable capital is useful
because it allows us to analyze how the optimal contracting problem changes as the size
of the firm changes. Since size is now an independent state variable, we can analyze its
effect on the probability of liquidation and investment independently from other variables,
such as age or equity value. In contrast, in Clementi-Hopenhayn size has to be decided in
every period as the amount of working capital invested in the firm, so that the incentive
problem remains stationary. This implies that the probability of liquidation and future
investment depend on the current size only through the current value of equity.

Second, Clementi and Hopenhayn [2] assume that the liquidation value of the firm
is constant, while we allow for a stochastic liquidation value. Our hypothesis is that the
liquidation value is higher after the firm has received a positive revenue shock; this as-
sumption can be justified assuming that liquidation is attained selling the firm’s assets to
other firms in the industry, and that revenue shocks for the firm are positively correlated

1See Albuquerque and Hopenhayn [1] for a model of optimal financial contracts and firm dynamics with
limited enforcement. Cooley, Marimon and Quadrini [4] also consider a model with limited enforcement
and optimal financial contracts, and they assume that a defaulting entrepreneur can have a fresh start in
the next period.
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to industry shocks (see e.g. Shleifer and Vishny [14]).
The results can be summarized as follows. First, when the liquidation value is sto-

chastic it is possible, depending on the value of the parameters, that liquidation occurs
with positive probability in equilibrium. More specifically, liquidation may occur after a
good shock that raises the value of capital. In such cases, since the liquidation value is
observable, moral hazard becomes less of a problem. In fact, there are values of the pa-
rameters for which the first best becomes implementable, something that cannot happen
with non-stochastic liquidation values.

Second, in general the optimal second-best policy may prescribe inefficient liquidation
and underinvestment. However, these effects are less marked for firms of bigger size. A
higher level of capital decreases the optimal probability of liquidation and increases the
future level of capital. These effects are independent and separate from the effect of an
increase in the value of equity, discussed in Clementi and Hopenhayn [2] and Quadrini
[12]. We also find that firms of bigger size, other things equal, have a return on assets
with both lower expected value and lower volatility. Since the returns on the firm’s assets
are defined as part of a bilateral contract, this is not the result of an equilibrium trade-off
between risk and return determined in the financial markets; our agents are risk neutral,
and in the absence of incentive problems they would push investment to the point at
which the expected return equals the risk—free rate. Rather, a higher rate of return is
observed only when the firm is implementing a sub-optimal policy for incentive reasons;
higher levels of capital are associated to less inefficient policies, which in turn yield lower
expected returns.

The rest of the paper is structured as follows. Section 2 introduces the model and
analyzes the optimal investment policy when there are no agency problems. In section
3 we start the analysis of the optimal financial contract under asymmetric information.
The analysis is continued in section 4, where we discuss the liquidation policy, and in
section 5 where we analyze the impact of size on the optimal policy. Section 6 contains
the conclusions. An appendix contains the proofs.

2 The Model

At time 0 an entrepreneur has an idea for a project. Implementing the project requires
forming a firm and acquiring an enabling asset at cost A. After the project has been
activated, the firm needs capital to operate. The cash flow at time t depends on the
amount of capital Kt existing at that time and on a random variable eθt. Let

eθt = ³eθ1,eθ2, . . . ,eθt´
be the history of shocks up to time t. Realizations of eθt and eθt will be denoted by θt and θt
respectively. At the beginning of each period t the project can be continued or liquidated.
If it continues, then the firm makes an investment decision and the cash flow produced
by the project is θtR (Kt). If it is liquidated, then the existing assets are sold at a value
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S (θt−1,Kt−1), that we will discuss shortly. We make the following assumption about the
production process.

Assumption 1 The random variables
neθto+∞

t=1
are independent and identically distrib-

uted, with Pr
³eθt = 1´ = p and Pr

³eθt = 0´ = 1 − p. The function R (·) is defined on
[0,+∞). It is bounded, continuously differentiable, strictly increasing, strictly concave
and it satisfies R (0) = 0 and pR0 (0) > 1.

Capital depreciates at a rate 1−d, and it can be increased by new investment or decreased
by selling part of the existing capital. Denoting ∆Kt as the change in capital level through
investment or sale at time t, the law of motion of capital becomes

Kt = dKt−1 +∆Kt,

with initial level of capital K0 = 0. With respect to the liquidation value S (θt−1,Kt−1),
we make the following assumption.

Assumption 2 The liquidation value depends linearly on capital:

S (θt−1,Kt−1) = S (θt−1) + q (θt−1) dKt−1,

with 0 ≤ S (0) ≤ S (1) and 0 ≤ q (0) ≤ q (1) < 1.

To simplify notation we will set S (0) = S, S (1) = S, q (0) = q and q (1) = q. The
interpretation here is that S (θt−1) is the liquidation value obtained selling the enabling
asset, while q (θt−1) is the unit price at which capital assets can be sold. Capital assets
have use outside the firm, so that q ≥ 0, but the productivity of capital assets is not as
high outside the firm as it is inside, hence the condition q < 1. Notice that q < 1 implies
that it can never be optimal to increase the amount of capital only to resell it in the
future. The assumption that the liquidation value is higher after a good shock than after
a bad shock can be justified assuming that the firm’s shock is correlated to the shocks of
other firms in the industry. Shleifer and Vishny [14] explain this effect focusing on the
potential buyers of the assets of a firm. The assets of a liquidated firm can be sold to
other firms in the industry, which are the best potential buyers (they can give the assets
their best use). But, if a firm suffers financial distress, its industry peers are likely to be
experiencing problems themselves. Therefore, they are less likely to buy the assets, which
are therefore sold to industry outsiders with a lower valuation.

Let δ ∈ (0, 1) be the discount factor at which all agents discount future cash flows. In
order to make the problem interesting, we will make the following assumption.

Assumption 3 A > δ
£
pS + (1− p)S

¤
.

4



The assumption implies that it cannot be optimal to buy the enabling asset only to
liquidate the firm in the following period. If the firm is set up, some nontrivial investment
policy is necessary in order to make the enterprise profitable.

The entrepreneur is protected by limited liability, meaning that the monetary transfer
from the firm to the lender in period t cannot exceed θtR (Kt). Furthermore, we assume
that the cash flow at time t is not verifiable, and it is private information of the entre-
preneur. This means that the entrepreneur can hide the whole income of the firm and
divert it to her own accounts. The financing contract will have to provide incentives to
the entrepreneur to report correctly the firm’s cash flow, which is equivalent to reporting
correctly the value θt.

2.1 Feasible Contracts

The entrepreneur has insufficient funds to start the project, and therefore needs financing
from a lender. A financing contract specifies the sum ML to be given by the lender to
the borrower at time zero, the amount of cash MB that the borrower has to invest in the
project, future investments and future payments between the two parties as a function of
history. At t = 0 the only possible activity is the acquisition of the enabling asset at price
A. Furthermore, the realization of the random variable eθ0 is observed by the entrepreneur.
From period 1 on the firm can start investing in capital and producing.

At each period t ≥ 1 at which the firm is active the sequence of events is the following.
First, a liquidation decision ct ∈ {L,C} is taken, where ct = L means liquidation and
ct = C means continuation. Whether or not a liquidation decision is taken is specified
by the contract. More generally, for any given history θt−1 the contract specifies the
probability αt = Pr (ct = L), where αt ∈ [0, 1] depends on history.

If the firm is liquidated then the contract is over, and the scrap value St = S (θt−1,Kt−1)
is distributed between the lender and the borrower according to the terms defined by the
contract. We call Qt the amount paid to the borrower in case of liquidation at time t; the
lender obtains St −Qt. If ct = C then the contract specifies the amount of capital Kt for
period t (or, more in general, a probability distribution κt (ht−1) over Kt). If Kt ≥ dKt−1
then new investment is required and the cost is It = Kt − dKt−1. If Kt < dKt−1 then the
firm sells part of its capital, obtaining a revenue equal to q (θt−1) (dKt−1 −Kt). Again, the
amount Kt prescribed by the contract is a function of past history. For future reference,
we define the cost of investment as

It (θt−1,Kt,Kt−1) =
½

Kt − dKt−1 if Kt ≥ dKt−1
q (θt−1) (Kt − dKt−1) if Kt < dKt−1.

Once the new capital level is selected the outcome θtR (Kt) is observed by the borrower.
Then the borrower sends a verifiable message mt to the lender and pays him an amount τ t
that depends on the current message, the level of capital Kt chosen and on past history.
We invoke the revelation principle and let the set of messages at time t be Θ = {0, 1}, i.e.
the entrepreneur reports the observed value of θt. An outcome at at time t ≥ 0 is given
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by
at =

n
ct,Kt,bθto

where bθt is the message issued by the borrower. We set c0 = C and K0 = 0, which just
means that at period zero the firm is started and investment in capital starts from period
one2. A history up to time t is a collection ht = {as}ts=0 and Ht is the set of all possible
histories up to time t. A feasible financing scheme is a collection of functions

f =
n
αt (ht−1) , Qt (ht−1, St) , κt (ht−1) , τ t

³bθt,Kt, ht−1
´o+∞

t=1

with the following properties:

• For each history ht such that as = (L, ·, ·) for some s ≤ t we have

Qt0 = τ t0 = St0 = Kt0 = 0

for each t0 > s. In other words, after a liquidation decision the firm stops operating.

• For each history ht we have αt+1 (ht) ∈ [0, 1] and Kt+1 (ht) ≥ 0, i.e. the probability
of liquidation has to be between zero and one and capital has to be non-negative.

• For each history ht, Qt+1 (ht, St+1) ≥ 0 and τ t
³bθt,Kt, ht−1

´
≤ bθtR (Kt). This is the

consequence of borrower’s limited liability.

A contract is a triplet
σ = (ML,MB, f)

where ML ≥ 0 is the amount of capital invested by the lender, MB ≥ 0 is the amount of
capital invested by the borrower and f is a financing scheme. The contract is feasible if
ML +MB ≥ A and f is a feasible financing scheme.

Let

PL
t (ht−1, θt) = αt(ht−1) (St −Qt (ht−1, St)) + (1− αt(ht−1)) (τ t (θt, ht−1)− It (ht−1))

be payoff to the lender at time t, after history ht−1, when eθt = θt and St = St (θt−1,Kt−1 (ht−2)),
where It (ht−1) is computed using the optimal policy Kt (ht−1) (we are assuming that the
lender received the profits in case of sale of capital and pays the cost of investment when
capital is increased).

Similarly, let

PB
t (ht−1, θt) = αt(ht−1)Qt (ht−1, St) + (1− αt(ht−1)) (θtR (Kt (ht−1))− τ t (θt, ht−1))

be the payoff to the borrower.

2Results don’t change if we allow for some investment at t = 0 (besides the purchase of the enabling
asset), but setting K0 = 0 makes the notation simpler.
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The contract is individually rational if

E

"
+∞X
t=1

δtPL
t

³
ht−1,eθt´# ≥ML (1)

E

"
+∞X
t=1

δtPB
t

³
ht−1,eθt´# ≥MB (2)

where the expectation is taken over all possible histories and under the assumption that
the borrower reports the true value θt at each period.

Let brt : Θ×Ht−1 → Θ be a reporting strategy at time t for the borrower and br = {brt}+∞t=0
be a reporting strategy for all periods. Denote with r the truthtelling strategy, that is
rt (θt, ht−1) = θt for each (θt, ht−1). Define

V brt (θt, ht−1) = E

"
+∞X
q=t

δq−tαq (brq−1, hq−1)Qq

³
hq−1, eSq´

¯̄̄̄
¯ht−1

#

+E

"
+∞X
q=t

δq−t (1− αq (brq−1, hq−1))³eθqR (Kq (brq−1, hq−1))− τ q (brq, hq−1)´
¯̄̄̄
¯ht−1

#
as the present value of the expected payment to the entrepreneur from time t on, given
history ht−1 and reporting strategy br. Here we have emphasized that the contractual
variables αq and Kq at time q depend on hq−1 also through the last period announcementbrq−1, and the transfer at time q depends on the current period announcement brq. Notice
also that in general brq is a function of hq−1 and θq.

A contract is incentive compatible if

V rt (θt, ht−1) ≥ V brt (θt, ht−1)
for each history (θt, ht−1) and reporting strategy br. Since we look at contracts induc-
ing truth-telling, it will be convenient to simplify notation by setting Vt (θt, ht−1) ≡
V rt (θt, ht−1).

2.2 Optimal Investment under Complete Information

Before analyzing the incomplete information case, we characterize the optimal policy when
there are no agency problems; this is the case, for example, when the entrepreneur has
enough cash to finance entirely the acquisition of the enabling asset A. The value of the
firm at the beginning of time t when the capital in previous period was Kt−1 is defined as

W (θt−1,Kt−1) =

sup
{αq(hq−1),Kq(hq−1)}+∞q=t∈F

E

"
+∞X
q=t

δq−t
³
αq eSq + (1− αq)

³eθqR (Kq)− Iq

³eθq−1,Kq,Kq−1
´´´#
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where F is the set of feasible investment and liquidation policies. Since the function
It (θt−1,Kt,Kt−1) is strictly decreasing in Kt−1, it immediately follows that W (θt−1, ·) is
increasing. Let

Wc (θt−1,Kt−1) = max
Kt≥0

pR (Kt)− It (θt−1,Kt,Kt−1) + δE
h
W
³eθt,Kt

´i
be the maximum value attainable by the firm when the capital is Kt−1 and the firm
does not liquidate in the current period. Notice that the value depends on θt−1 only if
Kt < dKt−1 and observe that Wc (θt−1,Kt−1) is strictly increasing in Kt−1. Then

W (θt−1,Kt−1) = max {S (θt−1,Kt−1) ,Wc (θt−1,Kt−1)} .
As previously pointed out, Clementi and Hopenhayn [2] have analyzed the case of non-
durable capital and non-stochastic liquidation value, i.e. d = 0 and St (θt−1,Kt−1) =
S. For that case, under complete information the optimal policy is simply to select an
investment KCH in every period solving

pR0
¡
KCH

¢
= 1. (3)

The value function is therefore independent of θt and equal to WCH =
pR(KCH)−KCH

1−δ .
In the general case the optimal policy is more complicated. We start introducing some

notation and establishing some preliminary results. Let cW (θt−1,Kt−1) be the value that
can be achieved if the firm never liquidates the project, that is

cW (θt−1,Kt−1) = max
{Kq}+∞q=t

E

"
+∞X
q=t

δq−t (pR (Kq)− Iq (θq−1,Kq,Kq−1))

#
. (4)

Assume for the moment that the optimal policy is such that Kt 6= dKt−1 at each t. Then
It is differentiable and the first order condition with respect to Kt is

pR0 (Kt) =
∂It
∂Kt

+ δE

·
∂It+1
∂Kt

¯̄̄̄
ht−1

¸
(5)

where
∂It
∂Kt

=

½
1 if Kt > dKt−1

q (θt−1) if Kt < dKt−1.

and
∂It

∂Kt−1
=

½ −d if Kt > dKt−1
−q (θt−1) d if Kt < dKt−1.

The next lemma establishes that the optimal policy prescribes positive investment for
each t ≥ 1.
Lemma 1 Consider the problem of maximizing the value of the firm when liquidation is
not allowed. Then, under the optimal policy, Kt > dKt−1 implies Kt+1 > dKt for each
value θt.
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The lemma states that, when the optimal policy is never to liquidate the firm, either
investment is positive on the optimal path and capital is never sold or the investment
policy is trivial and always equal to zero. The intuition is that a strictly positive investment
followed by negative investment can never be optimal, since q (θt) < 1. The firm can do
better by reducing investment at time t, thus avoiding overinvestment. The lemma also
implies that, when the optimal policy is never to liquidate the firm and investment is
positive, the level of capital is constant. Since K1 > 0, the lemma implies Kt > dKt−1 for
each t. Thus, condition (5) becomes

pR0 (Kt) = 1− dδ

for each t, implying a constant level of capital. In fact, define K∗ as the solution to

pR0 (K∗) = 1− dδ. (6)

Then, when the optimal policy is never to liquidate the firm, the optimal investment
policy is K1 = K∗ and It = (1− d)K∗ for each t > 1, that is the firm immediately reaches
the stationary level K∗ and then simply replaces the depreciated capital in each period.

We can now show that, when the optimal policy is to have positive investment then
the function cW (θ,K) is strictly increasing in K. The function depends on θ only out of
the optimal path, when K is large and it is optimal to sell part of it. The value of the
firm at the beginning of time 1 is

cW (θ, 0) =
pR (K∗)−K∗

1− δ
+ δ

dK∗

1− δ

=
pR (K∗)− (1− dδ)K∗

1− δ
.

At time 0 the value of the project is therefore

cW ∗ = δcW (θ, 0) . (7)

More in general, when K < K∗
d the value of the firm is

cW (θ,K) = cW (θ, 0) + dK. (8)

which is increasing in K. The only values observed on the optimal path are 0 and K∗.

2.3 Optimal Liquidation

Remember that, given the amount of capital accumulated Kt−1, at the beginning of every
period t the value of the firm is given by

W (θt−1,Kt−1) = max {S (θt−1,Kt−1) ,Wc (θt−1,Kt−1)} .
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If the optimal policy never allows for liquidation then Wc (θ,K) = cW (θ,K), and the
discussion above implies that the only values of capital observed under the optimal policy
are 0 and K∗. No liquidation is optimal if and only if the continuation value is always
higher than the liquidation value. Since for each level of capital the liquidation value is at
the highest level when θ = 1, a necessary condition for the optimality of the no liquidation
policy is cW (θ, 0) ≥ S. (9)

Notice further that S (1,K) = S+qdK and cW (θ,K) = cW (θ, 0)+dK for K ≤ K∗
d . Since

q < 1, condition (9) implies cW (θ,K) > S (θ,K) (10)

for each θ and K ≤ K∗
d . Therefore, condition (9) is both necessary and sufficient for

no—liquidation to be optimal.
Suppose now that condition (9) is violated. It must then be the case that liquidation

occurs with positive probability on the optimal path. We start observing that it can never
be the case that, on the optimal path, liquidation occurs when the liquidation value is
low.

Lemma 2 It can never be the case that, along the optimal path, liquidation occurs when
θ = 0.

The logic of the result is the following. Assumption 3 implies that, if the project has
positive NPV, when K = 0 it is optimal to continue at θ = 0, i.e. Wc (0, 0) > S (0, 0).
On the optimal path we have Wc (0,K) > Wc (0, 0) + qdK, since the firm can sell the
existing capital and adopt the same policy adopted when capital is zero3. Given that
S (0,K) = S (0, 0) + qdK, it follows that Wc (0,K) > S (0,K) for each K on the optimal
path.

We conclude that when condition (9) is violated and the project is feasible it must
be the case that the optimal policy is to liquidate at some t when θ = 1, and never to
liquidate when θ = 0.

Remark. If S (θ,K) = S + qK (i.e. the liquidation value does not depend on θ), the
first best policy must be that liquidation never occurs. From Lemma 2, liquidation does
not occur at θ = 0, and if the liquidation value does not depend on θ, it cannot occur at
θ = 1 either. Thus, if the liquidation value does not depend on θ then the only projects
with positive NPV are the ones for which (9) is satisfied.

Lemma 2 implies that the optimal policy is either never to liquidate or to liquidate
only when θ = 1. Consider the interval

£
0, K

∗
d

¤
of capital values (it can never be optimal

to have more capital than that). In this interval, the function cW (θ,K) is linear in K,

3The strict inequality comes from the fact that capital must be strictly positive under the optimal
policy at time 0, so the firm can sell dK − ε and save strictly positive investment cost.

10



with slope d, while the function S (1,K) is linear with slope qd, which by assumption is
smaller. Thus, if (9) is violated there is a value K+ such that

cW (1, 0) + dK+ = S + qdK+,

i.e.

K+ =
S −cW (1, 0)

d (1− q)
.

Finally, define K∗∗ as the value of capital that solves the equation

pR0 (K∗∗) = 1− δd (pq + (1− p)) . (11)

We summarize the results in the next proposition.

Proposition 1 When there are no agency problems the optimal investment policy can be
characterized as follows.

1. If condition (9) is satisfied then the firm chooses at period 1 the level K∗ defined in
(6) and never liquidates. In subsequent periods the investment replaces the depreci-
ated capital, i.e. Kt −Kt−1 = (1− d)K∗.

2. If condition (9) is violated and K+ ≥ K∗∗ then the firm liquidates whenever θt−1 = 1,
and otherwise chooses investment to reach the level K∗∗ < K∗ defined in (11). Thus,
K1 = K∗∗ if θ0 = 0, and in subsequent periods Kt − Kt−1 = (1− d)K∗∗, when
θt−1 = 0.

3. If condition (9) is violated and K+ < K∗∗ then the firm is liquidated at time 1 if
θ0 = 1. If θ0 = 0 then the firm invests K∗, keeps the level of capital constant and
never liquidates.

It may appear strange that the firm is liquidated only after a favorable shock, while it
is continued after an unfavorable shock. However, if S is interpreted as the resale value
of the project this appears to be quite intuitive. Essentially, the project is started by an
entrepreneur and, if successful, it is sold to a bigger firm which is better able to profit
from it. On the other hand, if the project is only moderately successful, the best choice
for the entrepreneur is to keep pursuing it until it becomes successful.

For future reference, we compute the value of the firm when liquidation at θ = 1 is
optimal. We have

W (0, 0) = pR (K∗∗)−K∗∗ + δ
¡
p
¡
S + qdK∗∗¢+ (1− p)W (0,K∗∗)

¢
and

W (0,K∗∗) = pR(K∗∗)− (1− d)K∗∗ + δ
¡
p
¡
S + qdK∗∗¢+ (1− p)W (0,K∗∗)

¢
.
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Solving for W (0,K∗∗) we get

W (0,K∗∗) =
pR(K∗∗)− (1− d)K∗∗

1− δ (1− p)
+

δp
¡
S + qdK∗∗¢

1− δ (1− p)
, (12)

so that

W (0, 0) =
pR(K∗∗)−K∗∗ + δ

¡
p
¡
S + qdK∗∗¢+ (1− p) dK∗∗¢

1− δ (1− p)
, (13)

We now move to the analysis of the optimal policy under incomplete information.

3 Efficient Contracts under Incomplete Information

We start reminding the reader of the timing under incomplete information. At the be-
ginning of period t a decision of liquidation or continuation is taken. The choice is based
on the values of previous history ht−1, including in particular the last report bθt−1. We
denote by ct this decision, and Pr (ct = L) = αt (ht−1). The value of αt is dictated by the
contract.

If the decision is to liquidate, the scrap value is St = S (θt−1,Kt−1), the entrepreneur
obtains Qt (ht−1, St) and the lender St−Qt (ht−1, St). If the decision is to continue then a
new level of capitalKt is decided as the realization of the probability distribution κt (ht−1).
Both Qt and the probability distribution κt are prescribed by the contract4. After capital
is chosen, production takes place and the borrower observes θtR (Kt) and announces bθt.
For simplicity, imagine that this happens at the middle of period t. The announcement
will change the following elements:

1. The payment to the lender in period t, τ t
³bθt,Kt, ht−1

´
. In particular, τ t (0,Kt, ht−1) ≤

0 because of limited liability.

2. The probability of liquidation at the beginning of period t + 1, αt+1 (ht) and the
payment Qt+1 (ht, St+1) in case of liquidation; notice that ht includes now the reportbθt and the realization of κt (ht−1); also, the value St+1 is observed when the firm is
liquidated and it depends on the actual θt.

3. The probability distribution on capital κt+1 (ht) at the beginning of period t+ 1, if
the firm is not liquidated.

We now introduce the following functions:

1. At the beginning of period t, history ht−1 is known and we denote V (ht−1) the
expected value for the entrepreneur.

4Using a probability distribution over Kt, rather than simply a value, is useful because it ensures the
concavity of the value function. This will be made clearer in the discussion after Proposition 2.
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2. At the beginning of period t a decision of liquidation or continuation is taken and,
in case of continuation, a level of capital Kt is decided. We denote with eV (Kt, ht−1)
the expected value for the entrepreneur when the decision is to continue and the
realization of κt (ht−1) is Kt.

3. After Kt has been decided the entrepreneur observes θt and the level of production
θtR (Kt) and decides a report bθt. We denote bV ³θt,bθt,Kt, ht−1

´
the expected value

for the entrepreneur at the middle of period t after history ht−1, capital choice Kt,
observation of θt and announcement of bθt.

Given our definitions, if the contract satisfies incentive compatibility so that the entrepre-
neur announces the true value of θt, we have

V (ht−1) = αtQt + (1− αt)Eκ(ht−1)

heV (Kt, ht−1)
i
,

where αt is a function of ht−1 and Qt is a function of ht−1 and St, andeV (Kt, ht−1) = pbV (1, 1,Kt, ht−1) + (1− p) bV (0, 0,Kt, ht−1) . (14)

The function bV ³θt,bθt,Kt, ht−1
´
is given by

bV ³θt,bθt,Kt, ht−1
´
= θtR (Kt)− τ

³bθt,Kt, ht−1
´
+ δV

³bht´ ,
where bht = ³ht−1,³C,Kt,bθt´´. The incentive compatibility constraint requires that

bV (θt, θt,Kt, ht−1) ≥ bV ³θt,bθt,Kt, ht−1
´

for each realization Kt and for each pair
³
θt,bθt´. Limited liability implies τ (0,Kt, ht−1) ≤

0, so there must be histories ht−1 such that the entrepreneur pays a strictly positive
amount when θt = 1 (if not, the participation constraint of the lender would be violated).
Thus, the incentive constraint is typically binding when θt = 1. In order to convince
the entrepreneur to report bθt = 1 when this is the true state of the world, the incentive
compatibility constraintbV (1, 1,Kt, ht−1) ≥ R (Kt) + δV (ht−1, (C,Kt, 0)) (15)

has to be satisfied. Notice that we have assumed τ (0,Kt, ht−1) = 0, since negative values
(equivalent to giving extra cash to the entrepreneur when θ = 0 is announced) can never
be optimal as they only worsen the incentive problem. Notice further that sincebV (1, 1,Kt, ht−1) = R (Kt)− τ (1,Kt, ht−1) + δV (ht−1, (C,Kt, 1)) ,

condition (15) is equivalent to

τ (1,Kt, ht−1) ≤ δ [V (ht−1, (C,Kt, 1))− V (ht−1, (C,Kt, 0))] . (16)

We will use this form of the incentive compatibility constraint when we adopt a recursive
representation of the optimal contract.
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3.1 The Value of the Equity and the Value of the Firm

To give a recursive formulation to the problem, let V = V (h) be the expected value
promised to the entrepreneur at the beginning of period after history h. Since the lender
has unlimited wealth, any non—negative amount of equity V can be attained simply by
requiring that the project be liquidated and the borrower paid Q = V . Notice that this
is true independently of the history h. On the other hand, negative values cannot be
implemented due to the limited liability of the borrower. Thus, the set of values that V
can take is [0,+∞). From now on, without loss of generality we will assume that the policy
depends on the history ht−1 only via the promised equity value V and the accumulated
level of capital K. Introducing additional variations based on history observed along the
equilibrium path cannot increase the value of the firm (see Spear and Srivastava [15] for
a justification of the recursive approach in dynamic moral hazard problems).

Denote now by W (θ, V,K) the value of the firm when the state of the world in the
previous period is θ, a value V has to be given to the entrepreneur and the capital in the
previous period is K.5 Let Kn be the choice of capital in period t. Then the function
W (θ, V,K) must satisfy the following functional equation

W (θ, V,K) = max
α,κ,τ(·),Q,V H(·),V L(·)

αS (θ,K)+

+(1− α)Eκ

£
pR (Kn)− I (θ,Kn,K) + δ

¡
pW

¡
1, V H (Kn) ,Kn

¢
+ (1− p)W

¡
0, V L (Kn) ,Kn

¢¢¤
(17)

subject to

V = αQ+ (1− α)Eκ

£
p (R (Kn)− τ (Kn)) + δ

¡
pV H (Kn) + (1− p)V L (Kn)

¢¤
(18)

τ (Kn) ≤ δ
¡
V H (Kn)− V L (Kn)

¢
each Kn ∈ suppκ (19)

τ (Kn) ≤ R (Kn) . (20)

0 ≤ α ≤ 1, Q ≥ 0, V H (Kn) ≥ 0, V L (Kn) ≥ 0, each Kn ∈ suppκ (21)

where V L (Kn) and V H (Kn) are the new levels of equity promised to the entrepreneur
when the new level of capitalKn is chosen and she announces θ = 0 and θ = 1 respectively,
and τ (Kn) is the amount paid by the entrepreneur when announcing θ = 1. Equality
(18) is the promise-keeping constraint, inequality (19) is the form taken by the incentive
compatibility constraint (16) under a recursive formulation and inequality (20) is the
limited liability constraint. Finally, (21) collects the feasibility constraints.

The problem of finding the value functionW (θ, V,K) can be decomposed in two parts.
First, we can compute the value of the firm when continuation is imposed. Second, once
that value has been obtained, we can use the continuation value and the liquidation value
to compute the optimal liquidation policy.

5Notice that in the case of complete information the value of the firm does not depend on V ; this is
why in the previous section the value of the firm was given by a function W (θ,K).
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Let Wc (θ, Vc,K) be the highest value of the firm that can be achieved when contin-
uation is imposed, the state in previous period was θ, the level of capital is K and the
entrepreneur is promised an equity value of Vc. ThereforeWc (θ, Vc,K) is obtained solving
the problem

Wc (θ, Vc,K) = max
κ,τ(·),V H(·),V L(·)

Eκ [pR (K
n)− I (Kn,K, θ)]

+δEκ

£
pW

¡
1, V H (Kn) ,Kn

¢
+ (1− p)W

¡
0, V L (Kn) ,Kn

¢¤
(22)

subject to

Vc = Eκ

£
p (R (Kn)− τ (Kn)) + δ

¡
pV H (Kn) + (1− p)V L (Kn)

¢¤
(23)

τ (Kn) ≤ δ
¡
V H (Kn)− V L (Kn)

¢
, τ (Kn) ≤ R (Kn) (24)

V H (Kn) ≥ 0, V L (Kn) ≥ 0 each Kn ∈ suppκ (25)

Notice that Wc (θ, Vc,K) is computed taking as given the function W (θ, V,K). Once we
have the function Wc, we can rewrite the maximization problem as follows:

W (θ, V,K) = max
α,Q,Vc

αS (θ,K) + (1− α)Wc (θ, Vc,K) (26)

subject to
V = αQ+ (1− α)Vc

Q ≥ 0, 1 ≥ α ≥ 0.
Standard results in dynamic programming imply that the solution to the functional equa-
tion (26) is unique (see Quadrini [12] for details). The remaining task is to characterize
the properties of the functions Wc and W and of the optimal policy.

Inspecting problem (26) we can make a few simple observations. First, for each pair
(V,K) we have W (1, V,K) ≥ W (0, V,K). This is because the constraint set is not
affected by θ, while the objective function is non-decreasing in θ. (The inequality can
be strict only if the optimal policy requires α > 0 or Kn < dK when θ = 1). Second,
it is obvious that whenever the optimal policy requires α (θ, V,K) = 0 then we have
W (θ, V,K) =Wc (θ, V,K). Third, if the optimal policy at a given V prescribes Kn > dK
for both values of θ then Wc is constant with respect to θ. Fourth, if V = 0 then the
optimal policy prescribes Kn = 0 in each period in which the firm remains active with
positive probability and Q = 0 in case of liquidation. In fact, the entrepreneur must be
given at least Eκ [pR (K

n)] in each period in which the firm is active. Thus, the only
way to guarantee V = 0 is to set Kn = 0 with probability 1. Keeping the firm active
with Kn = 0 can be optimal only if the expected value of the scrap value in the following
period is higher than in the current period. This cannot happen if θ = 1, thus implying
that when θ = 1 and V = 0 the optimal policy is to liquidate and the value of the firm
is W (1, 0,K) = S (1,K). If θ = 0 then it is optimal to wait for liquidation until θ = 1 if
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S < δ
¡
pS + (1− p)S

¢
, or S < δp

1−δ(1−p)S, and liquidate immediately otherwise. Thus, if
we define

S∗ = max
½
S,

δp

1− δ (1− p)
S

¾
(27)

then the value of the firm is W (0, 0,K) = S∗+q (θ) dK. Notice that this is strictly higher
than S (0,K) when S∗ > S.

The next proposition establishes further results about the functions W and Wc.

Proposition 2 For each (θ,K) the functions W (θ, V,K) and Wc (θ, Vc,K) satisfy the
following properties.

1. The functions W (θ, V,K) and Wc (θ, V,K) are non-decreasing in all arguments.
For each (θ,K) the functions W (θ, ·,K) and Wc (θ, ·,K) are concave and the partial
derivatives with respect to V are defined almost everywhere.

2. For each (θ,K) there is a value V(θ,K) such that the function W is linear in V on the
interval

£
0, V(θ,K)

¤
. If Wc (θ, V,K) is constant with respect to θ then V(1,K) ≥ V(0,K).

The proposition shows that the results of Clementi and Hopenhayn [2] and Quadrini [12]
continue to hold (with some obvious modifications) when capital is durable and the liquida-
tion value is stochastic: For given values of θ and K the value of the firm is non-decreasing
and concave in the value of equity. The linear part of the value function corresponds to
the case in which liquidation occurs with positive probability. The difference is that the
threshold values for which liquidation occurs now depend on θ and K.

For a given value of K and θ, the set of values for V can be divided in three regions
[0, V0), [V0, V1] and (V1,+∞) with the following characteristics.

• When V ∈ [0, V0) then the firm is liquidated with probability α = 1− V
V0
when θ = 0

and with probability α = 1− V
V1
when θ = 1.

• When V ∈ [V0, V1] then the firm is not liquidated when θ = 0 and it is liquidated
with probability α = 1− V

V1
when θ = 1.

• When V > V1 the firm continues with probability 1.

Notice that the values of V0 and V1 typically depend on θ and K. Notice also that
sometimes for θ = 1 it is optimal to liquidate with probability 1. In that case V1 = +∞.

Figure 1 shows the case in which liquidation is undesirable (by this we mean that for
a sufficiently high value of V liquidation does not occur), Wc does not depend on θ (no
negative investment in case of continuation) and S∗ = S, where S∗ is defined in (27). In
this case the liquidation area is [0, V0] when θ = 0 and [0, V1] when θ = 1. Liquidation is
more likely when θ = 1 since in that case liquidation is less costly.
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V1V0
V

W

Wc(V,K)

S(0,K)

S(1,K)

Liquidation areas when liquidation is undesirable.
(1)

Figure 2 shows the case in which liquidation occurs with probability 1 when θ = 1.
In this case immediate liquidation is preferable to continuation for every value V , i.e.
S (1,K) > Wc (1, V,K) for each value V . Thus, V(1,K) = +∞ and the value function is
W (1, V,K) = S (1,K).

V0
V

W

Wc(V,K)

Wc(0,K)

S(0,K)

S(1,K)

Liquidation areas when liquidation is desirable.
(2)

In the rest of the paper we will focus on the impact that the introduction of durable capital

17



and stochastic liquidation values has on the optimal policy of the firm.

4 Liquidation and Efficiency

When the liquidation value is not stochastic there is no liquidation under the first best
policy. However, with a stochastic liquidation value, liquidation may occur under the first
best policy when θ = 1. It turns out that in such situations it may become possible to
achieve the first best even in the presence of moral hazard. In fact, the first best can be
achieved when the liquidation value under θ = 1 is sufficiently large.

The intuitive explanation is that liquidation values are easier to monitor than output
values, since we have assumed that the output θR (K) is not verifiable, while the liquida-
tion value S (θ,K) is. When the liquidation value is not stochastic this does not help to
achieve the first best, since liquidation should never occur anyway. But with a stochastic
liquidation value the first-best policy does sometime include liquidation and in those cases
we can exploit the verifiability of liquidation values to lessen the incentive constraints.

4.1 Is the First Best Attainable?

The first best is implementable when it is possible to assign a value V to the entrepreneur
at time zero such that the first best policy is implemented in every period and the optimal
incentive compatible contract satisfies the individual rationality constraints for the lender
and the entrepreneur.

We start from the following result. Remember that K∗ is the first-best level of capital
when liquidation is never optimal.

Proposition 3 Suppose that liquidation does not occur under the first best. Then the first
best policy is achievable if and only if V ≥ pR(K∗)

1−δ .

One implication of the proposition is that the initial level of capital is not important in
order to achieve the first best. Independently of the level of capital the first best can be
achieved provided that the value of equity is high enough. Thus, if at any given moment
in time the value V reaches pR(K∗)

1−δ then from that point on the optimal contract will
implement the first best policy.

Another implication is that in this case the first best cannot be achieved at period 0,
i.e. at least for some time the optimal second best policy must be different from the first
best policy. Since the value of the project under the first best policy, given by (7), is

W ∗ = δ
pR (K∗)− (1− dδ)K∗

1− δ
<

pR (K∗)
1− δ

,

a contract assigning V ≥ pR(K∗)
1−δ at time 0 would violate the individual rationality con-

straint for the lender. Notice however that the value pR(K∗)
1−δ can be reached after a sequence

of positive shocks.
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Suppose now that the first best policy requires investingK∗∗, obtained solving equation
(11), whenever θt−1 = 0 and liquidating the firm at the beginning of period t whenever
θt−1 = 1. Can the first best policy be implemented? The answer here is ‘sometimes’.
More specifically, let W (0, 0) be the value of the firm under the first best policy when
θ = 0, as defined in (13). Then the value of the project under the first best policy when
the capital is zero is

W ∗ = δ
¡
pS + (1− p)W (0, 0)

¢
.

where W (0, 0) takes the value given by (13). We will show that when

W ∗ −A ≥ δ
pR (K∗∗)
1− δ

(28)

the first best can be implemented.

Proposition 4 Suppose that the first-best policy requires a level of capital K∗∗ when θ = 0
and liquidation when θ = 1. Then the first best can be implemented if and only if condition
(28) is satisfied

To gain additional insights, use the value of W (0, 0) given in (13) to write condition (28)
as

pS − (1− δ (1− p))

δ
A ≥ p2R (K∗∗)

1− δ
+ (1− p) (1− δd ((1− p) + pq))K∗∗. (29)

In general the condition is more easily satisfied when the liquidation value S is large and
K∗∗ is low. Thus, high liquidation values will make the implementation of the first best
possible. The intuition is as follows. The announcement of θt = 1 leads to liquidation
in the following period; since the entrepreneur could announce θt = 0 in each period and
steal R (K∗∗) whenever possible, a mimimum value of pR(K∗∗)

1−δ is necessary to pay the
entrepreneur a sufficiently high value at liquidation to make the announcement incentive
compatible. On the other hand the payment cannot be too high, since in that case the
individual rationality constraint for the lender would be violated. The two goals are
compatible when the liquidation value is high enough compared to what can be stolen in
case of continuation, i.e. when S and q make the liquidation value sufficiently high or when
a low level of K∗∗ makes continuation not particularly attractive for the entrepreneur.

Notice that condition (28) applies in the extreme case in which the lender has to finance
entirely the initial investment A. When the entrepreneur can contribute an initial capital
MB then the individual rationality condition for the lender isW ∗−ML ≥ δ pR(K

∗∗)
1−δ , which

is easier to satisfy since ML < A.

4.2 The Second Best Policy and Efficient Liquidation

Even when the first-best is not attainable, the possibility of efficient liquidation still helps
in getting the second best policy closer to the first best policy. Specifically, it turns out
that liquidation with probability 1 occurs only when it is efficient.
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Proposition 5 For each level K, the optimal policy for the incomplete information case
prescribes α = 1 if and only if this is also the optimal policy for the complete information
case.

The idea is that, for any given level of capital, the value of continuation decreases when
there are agency problems, but the value of liquidation does not. Thus, if liquidation is
better than continuation under the first best policy, it must be better under the second
best policy as well. On the other hand, if liquidation is implemented with probability
1 under the second best policy then it must be the case that liquidation is better than
continuation for every possible value continuation value Vc. Otherwise, it would be better
to randomize between liquidation and continuation with a value Vc. However, when Vc is
sufficiently high the first best policy becomes implementable, so the value of continuation
under incomplete information is identical to the value under complete information. Thus,
liquidation must be the first best policy as well.

There are a couple of important caveats to Proposition 5. First, the proposition only
states that liquidation with probability 1 will occur whenever it is efficient for a given level
of K. It does not guarantee that the first-best level of K will actually be reached under
the optimal second-best investment policy. Thus, even if liquidation with probability one
occurs under the first and second best for the same sequence of shocks, the actual value
of liquidation may be different. Second, under the first best policy liquidation either does
not occur or it occurs with probability 1. Under the second best policy liquidation may
occur with probability strictly positive but strictly less than one. In all such cases the
optimal first-best policy would be not to liquidate.

5 The Effect of Size

We now analyze how the value function and the optimal policy vary with the size of the
firm. The empirical results on the effect of size are summarized by Cooley and Quadrini
[3] as follows:

Conditional on age, the dynamics of firms (growth, volatility of growth, job
creation, job destruction, and exit) are negatively related to the size of the
firm.

Our model generates theoretical predictions which are broadly in agreement with these
stylized facts. While age does not appear as variable in the objective function, age is pos-
itively correlated with V since firms with a low V have a higher probability of liquidation.
Thus, information on the dynamics of the firm conditional on age can be obtained by
fixing V and looking at how the value function and the optimal policy change with K.

We find that an increase in K, keeping V constant, decreases the probability of liq-
uidation, since increasing size increases the continuation value more than the liquidation
value. A bigger current size is positively correlated to bigger future size, since the cost of
investment is reduced, but whenever the firm makes positive investment, the amount of

20



the investment is negatively correlated to size. This follows from the fact that, conditional
on making positive investment, the optimal level of capital is not related to existing capi-
tal, so that a higher current level of capital simply means that less investment is necessary
to achieve the optimal level. Thus, growth in general depends negatively on size. The
volatility of growth also depends negatively on size.6

5.1 Size and the Optimal Policy

Our first result establishes that, for a given V , the probability of liquidation decreases
when the existing stock of capital increases. More precisely, remember that V(θ,K) is
the threshold value such that liquidation with prositive probability occurs only when
V < V(θ,K); then we have the following result.

Proposition 6 The value V(θ,K) does not increase in K and it strictly decreases if the op-
timal policy prescribes strictly positive investment at

¡
θ, V(θ,K),K

¢
. The value V(θ,K) strictly

increases in θ. For each pair (θ, V ) the probability of liquidation does not increase in K
and it strictly decreases if α (θ, V,K) ∈ (0, 1) and V(θ,K) strictly decreases in K.

The proposition shows that the probability of survival, other things equal, increases
with the size of the firm. This is different from the result in Clementi and Hopenhayn.
In their case the capital stock is not a state variable, and it is decided in every period as
part of the optimal policy. The positive correlation of size and the probability of survival
exists only because both size and the probability of survival are correlated to the value of
equity: firms with a high equity value are on average larger and have a higher probability
of survival. Notice furthermore that the positive relation between size and equity holds
only on average in the Clementi—Hopenhayn model; for some value the optimal investment
decreases7 in V .

In our model size is measured by the existing stock of capital at the beginning of the
period. It therefore makes sense to look at the effect of exogenous changes in size. The
intuition for the result in Proposition 6 is that an increase of capital increases the value
of continuation more than the value of liquidation. This is easier to see when the optimal
policy prescribes strictly positive investment with probability 1 under continuation. In
that case an additional amount of capital ∆K increases the value of continuation by
d∆K (since it reduces the necessary investment by that amount), while the value of
liquidation increases only by q (θ) d∆K (the value at which capital can be sold). In
general, the increase in the value of continuation is higher as long as there is a strictly
positive probability of positive investment.

The next proposition establishes that, other things equal, a larger firm is more likely
to choose a larger level of capital. Before we state the result, some notation is necessary.

6Our model cannot make predictions on job creation and destruction, since capital is the only factor of
production. However, the model could be extended assuming a fixed labor-capital ratio, as in Cooley and
Quadrini [3], to obtain a negative relation between size and job creation and destruction.

7The same is true in our model: the optimal choice Kn is not necessarily monotonic in V .
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For a given state s = (θ, V,K) let eKn
s be the random variable chosen as optimal capital

policy at s. Define Ξs as the support of eKn
s , and let K

n
s and Kn

s be the supremum and
the infimum of Ξs. Finally, for ∆ > 0 define the state s + ∆ = (θ, V,K +∆), i.e. the
state with the same θ and V as s but a level of capital increased to K+∆, and let eKn

s+∆,
Ξs+∆ and Kn

s+∆ and K
n
s+∆ be defined in the obvious way. The next result shows that an

increase in current size, defined as existing capital stock K at the beginning of period t,
causes an increase in future size, defined as the optimal capital stock Kn chosen in period
t. However a higher level of K in general requires less investment, since the optimal new
level of capital Kn is closer.

Proposition 7 Consider two states s and s+∆. Then

1. eKn
s+∆ (weakly) first order stochastically dominate eKn

s .

2. If Kn
s > d (K +∆) or Kn

s < dK then eKn
s+∆ =

eKn
s .

3. If Kn
s > d (K +∆) then the amount of investment decreases.

The intuition for the first point is relatively simple. The cost of investment I (θ,Kn,K)
is strictly decreasing in K. Thus, other things equal, it cannot be an optimal policy to
choose a higher future level of capital stock when the current capital stock is lower.

The second point simply follows from the fact that increasing the level of capital when
the investment is strictly positive or strictly negative does not change the constraint set
and it is equivalent to adding a constant to the objective function. The optimal solution
must therefore remain the same. The third point follows immediately. If the new capital
level remains the same when the current capital stock increases, then the investment
necessary to achieve the new capital level must decrease.

Notice that the proposition focuses exclusively on the role of past size in determining
future size. It says that, other things equal, the future size of the firm does not decrease
when the current size goes up. It does not say that current size is the only determinant
of future size. It remains true that the optimal size typically depends also on V and θ.
While, as in Clementi-Hopenhayn, the relation between Kn and V is not monotonic, we
can say something about the effect of θ.

Proposition 8 Consider the two states s0 = (0, V,K) and s1 = (1, V,K). Then eKn
s0

(weakly) first order stochastically dominate eKn
s1. If K

n
s > dK then eKn

s0 =
eKn
s1.

The intuition here is that when θ = 1 selling capital is more convenient. When the
optimal policy at θ = 1 involves only positive investment then this is irrelevant, so that
the optimal policy remains the same at θ = 0. Otherwise, the optimal plan requires selling
more capital when θ = 1 than when θ = 0.
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5.2 The Financial Consequences of Size

One implication of the previous results is that the expected return on assets of the firm
is lower for bigger firms, and (under certain conditions) is also less volatile. To see this,
define the return on assets for the firm when the current state is s = (θ, V,K) as

erst = eYt +fWt+1 −Wt

Wt
, (30)

where eYt is the random variable determining the net income produced by the asset in
the current period, fWt+1 is the random variable determining the value of the firm at the

beginning of next period andWt = E
heYt + δfWt+1

i
is the value of the firm at the beginning

of the current period. Let rst be the mean of erst . In general the probability distribution oferst depends on the optimal policy adopted, and it therefore changes with s.
Our first result shows that the expected return decreases with size.

Proposition 9 Consider a state s = (θ, V,K), and let ers be the random variable defined
by (30). Then at each state s+∆ = (θ, V,K +∆) with ∆ small enough we have E

£ers+∆¤ ≤
E [ers], with strict inequality if the optimal policy at s is such that Kn

s > dK or K
n
s < dK.

Notice that the predictions are made for a fixed value of V , i.e. we consider what happens
to the firm when K is increased while V remains constant. This can be done only in the
presence of durable capital.

To grasp the main intuition for the result, suppose that the optimal policy is single
valued and investment is positive, i.e. there is a single optimal value Kn and Kn > dK,
and there is no liquidation. If (θ, V,K) is the state at the end of time t − 1, so that
Wt =W (θ, V,K), then eYt is the random variable

eYt = ½ R (Kn)− (Kn − dK) with prob. p
− (Kn − dK) with prob. 1− p,

while fWt+1 is the random variable

fWt+1 =

½
W
¡
1, V H ,Kn

¢
with prob. p

W
¡
0, V L,Kn

¢
with prob. 1− p

Then W = E
³eYt´+ δE

³fWt+1

´
, and the mean rate of return is

r =
E
³eYt´+E

³fWt+1

´
−W

W
=
(1− δ)E

³fWt+1

´
W

.

If we increase the amount of capital by ∆K the optimal policy does not change, as long
as Kn > d (K +∆K). The current value increases by d∆K, while the random variable
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fWt+1 is unaffected, since the optimal policy remains the same. Therefore, the new mean
return is

r0 =
(1− δ)E

³fWt+1

´
W + d∆K

< r.

Essentially, the point is that a larger firm has the same future values as a smaller form,
since the optimal policy does not change. However the current value is higher, because
lower investment is required, and this reduces the mean return.

A similar argument can be made for the volatility of returns.

Proposition 10 Suppose the optimal policy at s = (θ, V,K) is such that Kn
s > dK or

K
n
s < dK. Then at each state s + ∆ = (θ, V,K +∆) with ∆ small enough we have

V ar
£ers+∆¤ < V ar [ers].

The intuition is similar to the one discussed above for the average return. When the
optimal future policy is fixed the future value are also fixed, and so is its variability. On
the other hand, higher values of K reduce the need for investment and therefore increase
the current value of the firm. The volatility of the return is basically obtained dividing
the volatility of the future values by the current value; the numerator is fixed while the
denominator increases when K increases, thus reducing the volatility of returns.

5.3 Capital Structure and Sensitivity of Investment to Cash Flow

We conclude our analysis with a couple of remarks on the sensitivity of capital structure
to size and investment to cash flow. While we don’t have formal results, the model can
be used to provide some intuition about these issues.

The financial contracts considered in this paper are quite complicated. However we
can interpret V as equity, and B (θ, V,K) = W (θ, V,K) − V as debt8.The evolution
of the capital structure is complex, since in general K and V move together and in non-
trivial ways along the optimal path. However, stretching somehow the model, assume that
exogenous variations of K at any given moment are possible, e.g. because of exogenous
changes in the prices of capital assets. In that case the value of V remains constant,
so that the conclusion is that firms with higher level of capital have a capital structure
more tilted towards debt. Furthermore, if we consider the case of non-stochastic policies
and use the distance V H − V L as a measure of the volatility of equity then higher levels
K lead to higher value of Kn and, since R (Kn) = δ

¡
V H − V L

¢
, to higher volatility.

Thus, in general, bigger firms are more likely to be debt-financed and have more volatile
equity. The conclusion that higher debt leads to a more volatile return on equity is of
course familiar from the standard Modigliani-Miller theorem, but here it is reached for
quite different reasons (remember that the Modigliani-Miller theorem does not hold in our
model).

8This interpretation follows Clementi and Hopenhayn [2]. Other interpretations are possible; for exam-
ple, the firm might be entirely financed with equity, with V being the value of the ‘insider equity’ held by
the manager and B the value of ‘external equity’ held by outside financiers.
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Consider now the sensitivity of investment to cash flow, a question that has received
much attention in the literature. Under some conditions (see Hayashi [7]) the investment
in any given period should be explained only by the Tobin’s q, i.e. the ratio W (θ,V,K)

A+K .

Quadrini [12] points out that, in models with non-durable capital and random variables eθt
which are independent across periods, Tobin’s q is in fact a sufficient variable to explain
investment. The reason is that the optimal investment is entirely explained by the value
of equity V , which in turn determines the value of the firm W (V ). Thus, a regression
of investment over Tobin’s q and cash-flow should give a non-significant coefficient for
cash flow. A positive coefficient for cash flow reappears when shocks are not independent;
in that case the past value of shocks determines the future profitability of investment,
so the optimal level of investment depends not only on V but also on θt−1. Since θt−1
also determines the cash flow, the sensitivity of investment to cash-flow is reintroduced.
Introducing durable capital is another way in which the sensitivity of investment to cash
flow may reappear. With durable capital the state of the firm is defined by two variables,
V andK. The optimal investment policy depends separately on both variables, not just on
the way in which they influence the total value of the firm W (θ, V,K). Thus, a regression
of investment over Tobin’s q and cash-flow should typically give a non-zero coefficient for
cash flow.

6 Conclusions

This paper has introduced stochastic liquidation values and durable capital in a model
of optimal dynamic financing with moral hazard. A stochastic liquidation value makes it
possible to have a positive probability of liquidation as part of the first-best policy, i.e.
the value maximizing policy when there is no moral hazard. Furthermore, we show that
under certain conditions it makes also possible to achieve the first best even with moral
hazard.

Introducing durable capital allows us to make predictions on the impact of the capital
stock over the optimal policy of the firm. Size has always been recognized as an important
determinant of firm’s behavior, but in absence of durable capital it is difficult to introduce
size as a state variable. We show that, conditional on age, larger firms have a higher
probability of survival, are more likely to be big in the future, have lower investment rates
and lower average return and volatility on the assets. The results seem to be qualitatively
consistent with the empirical literature.

Further research should extend the analysis in two directions. First, it would be
perform a quantitative exercise, considering a parametric version of the model with realistic
values for the parameters and checking whether the dynamics predicted by the model
are quantitatively consistent with what has been found in empirical studies. Second, it
would be interesting to move the analysis to the industry level, analyzing the endogenous
determination of liquidation values as well as the impact of entry and exit.
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Appendix

Proof of Lemma 1. We first show that it cannot be the case that at some time t+1
we have Kt+1 < dKt for each value of θt. If that is the case then

E

 ∂It+1

³eθt,Kt+1,Kt

´
∂Kt

¯̄̄̄
¯̄ht−1

 = −pqd− (1− p) qd. (31)

Evaluating (5) at time t and time t+ 1 we have

pR0 (Kt) =
∂It
∂Kt

+ δE

 ∂It+1

³eθt,Kt+1,Kt

´
∂Kt

¯̄̄̄
¯̄ht−1

 .

pR0 (Kt+1) = q (θt) + δE

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht
 .

Since at time t + 1 there is a sale, we have Kt+1 < dKt, hence by concavity R0 (Kt+1) >
R0 (Kt). Thus

∂It
∂Kt

+ δE

 ∂It+1

³eθt,Kt+1,Kt

´
∂Kt

¯̄̄̄
¯̄ht−1

 < q (θt) + δE

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht


or

∂It
∂Kt
−q (θt) < δ

E

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht
−E

 ∂It+1

³eθt,Kt+1,Kt

´
∂Kt

¯̄̄̄
¯̄ht−1

 .

Consider the case θt−1 = θt. The left hand side is either 0 (if there is negative invest-
ment) or 1− q (θt) (if there is positive investment). On the right hand side, the value of

E

·
∂It+1(eθt,Kt+1,Kt)

∂Kt

¯̄̄̄
ht−1

¸
is given by (31). The value of E

·
∂It+2(eθt+1,Kt+2,Kt+1)

∂Kt+1

¯̄̄̄
ht

¸
will

be −d (if positive investment always occurs), −pd − (1− p) qd (if investment is positive
at θ = 1 and negative at θ = 0), −pqd− (1− p) d (if investment is negative at θ = 1 and
positive at θ = 0) or −pqd− (1− p) qd (if investment is always negative). In all cases the
right hand side is nonpositive, thus is cannot be strictly higher than the left hand side.
We therefore have a contradiction.

Next, suppose that at a given time t it is optimal to have Kt < dKt−1 when θt−1 = 0
but Kt > dKt−1 when θt−1 = 1. This is impossible: if it is optimal to increase the amount
of capital rather than selling when the price is high (i.e. θt−1 = 1), then it must be optimal
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to increase the amount of capital when the price is low (i.e. θt−1 = 0). Thus, the only
possibility when sale occurs with positive probability at any time t is that there is a sale
when θt−1 = 1 and no sale when θt−1 = 0.

Finally, suppose that at θt−1 = 0 we have Kt > dKt−1 and at θt = 1 we have Kt+1 <
dKt. Then

pR0 (Kt) = 1− dδE [pq + (1− p)]

and

pR0 (Kt+1) = q + δE

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht−1

 .
Again, by concavity R0 (Kt+1) > R0 (Kt), therefore

q + δE

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht−1

 > 1− dδE [pq + (1− p)] . (32)

We have previously shown that there is no period at which there is negative investment
with probability 1. Thus, at t+ 2 there are two possibilities:

• investment is negative when θt+1 = 1 and positive investment when θt+1 = 0. In
this case we have

E

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht−1

 = −d [pq + (1− p)] ,

so that inequality (32) is equivalent to 0 > 1− q, which cannot be satisfied.

• investment is always positive. In this case we have

E

 ∂It+2

³eθt+1,Kt+2,Kt+1

´
∂Kt+1

¯̄̄̄
¯̄ht−1

 = −d,
and inequality (32) becomes equivalent to

dδ [pq + (1− p)− 1] > 1− q.

This is impossible since the LHS is non-positive and the RHS is strictly positive.

This concludes the proof.

Proof of Lemma 2. Let t∗ be the first time at which liquidation occurs at θ = 0, and
let Kt∗−1 be the amount of capital at the beginning of date t∗. It must be

S (0,Kt∗−1) ≥Wc (0,Kt∗−1) ,
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At time 1, right after the firm has been established, liquidation at θ = 0 cannot be optimal,
since otherwise (by Assumption 3) the firm would not be profitable. This implies

Wc (0, 0) > S (33)

and an optimal level K1 (0) > 0 of investment. The value Wc (0, 0) is obtained under the
optimal investment and liquidation plan.

Consider now the problem at the beginning of time t∗. The firm has capital dKt∗−1.
The firm can always adopt the same plan as at time zero, except that it will invest
K1 − dKt∗−1 instead of K1, or sell the quantity dK∗

t −K1 if it is positive. When K1 ≥
dKt∗−1 then the firm gets at least Wc (0, 0) + dKt∗−1, since it uses the same policy as at
time zero but saves dKt∗−1 in investment. If K1 < dKt∗−1 then the firm saves K1 and
also gets q

¡
dK∗

t−1 −K1

¢
, so that the value is at least Wc (0, 0) +

¡
1− q

¢
K1 + qdKt∗−1.

Since liquidation is optimal we have either

S + qdKt∗−1 ≥Wc (0, 0) + dKt∗−1. (34)

or
S + qdKt∗−1 ≥Wc (0, 0) +

¡
1− q

¢
K1 + qdKt∗−1. (35)

Inequalities (33) and (34) are compatible only if q > 1, but we assumed that the opposite
is true. Inequalities (33) and (35) are compatible only

¡
1− q

¢
K1 < 0, which is unfeasible.

Proof of Proposition 1. The first point has already been proven. We now prove the
remaining 2.

If condition (9) is violated then we have cW (1, 0) < S. Thus, when θ0 = 1 the project
is liquidated. The problem at time 1 when θ0 = 0 has been observed and we assume that
the firm is always liquidated at θ = 1 is therefore

W (0, 0) = max
K≥0

pR (K)−K + δ
£
p
¡
S + qdK

¢
+ (1− p)W (0,K)

¤
.

Since δpS is constant, this is equivalent to solving the problem

W (0, 0) = max
K≥0

pR (K)− (1− δpqd)K + δ (1− p)W (0,K) .

Since, by Lemma 2, the firm is never liquidated when θt−1 = 0, the problem becomes
equivalent to solving one in which liquidation never occurs, the discount rate is δ (1− p)
rather than δ and the price of capital is (1− δpqd) rather than 1. Thus, the optimal policy
will be to reach immediately the value K∗∗ such that

pR0 (K∗∗) = 1− δd (pq + (1− p)) .

At time t, the firm replaces the depreciated capital (i.e., It = (1− d)K∗∗) whenever
θt−1 = 0, and liquidates the firm at S + qK∗∗ otherwise.

28



Notice that if K+ ≥ K∗∗ then it is actually optimal to liquidate when θt−1 = 1 and
Kt−1 = K∗∗, thus confirming the optimality of the liquidation policy. If K+ < K∗∗ then
liquidation cannot be optimal when θ = 1 and capital is K∗∗. Since K∗ > K∗∗ and for
levels of capital K ≤ K∗

d both the value of continuation and liquidation increase linearly,
we conclude that the optimal policy must be to continue for each value of θ, so that the
optimal level of capital is K∗. Notice however that since (9) is violated, liquidation when
θ = 1 is optimal when the level of capital is K = 0. Thus the optimal policy involves
liquidation only if θ0 = 1, and a constant level of capital K∗ otherwise.

Proof of Proposition 2. Since we will use results from Stokey, Lucas and Prescott [13],
we first recast the problem using a similar notation, so that the way in which their results
are applied is clearer. Define the vector of control variables as

x = (αx, Qx,Kx, τx, Vx (0) , Vx (1)) .

Given a choice y = (αy, Qy,Ky, τy, Vy (0) , Vy (1)), the return function is defined as

F (x, y, θ) = αyS (θ,Kx) + (1− αy) [pR (Ky)− I (θ,Kx,Ky)] .

Define Γ as the set of vectors (αy, Qy,Ky, τy, Vy (0) , Vy (1)) that satisfy the following:

αy ∈ [0, 1] , Qy ≥ 0, Ky ≥ 0

τy ≤ min {δ (Vy (1)− Vy (0)) , R (Ky)}
Vy (0) ≥ 0, Vy (1) ≥ 0.

and ∆Γ (x, θ) the set of probability distributions over Γ that satisfy

Vx (θ) = Eγ [αyQy + (1− αy) [p (R (Ky)− τy) + δ (pVy (1) + (1− p)Vy (0))]] ,

[¿ES Vx (θ) O Vy (θ)?] where γ ∈ ∆Γ (x, θ) denotes a probability distribution over Γ.
The value function can be written as

W (x, θ) = max
γ∈∆Γ(x)

(1− αx)Eγ,θ0
£¡
F (x, y, θ) + δE

£
W
¡
y, θ0

¢¤¢¤
Standard results in dynamic programming imply that W (x, θ) exists and is unique. It is
also clear that

W (θ, (αx, Qx,Kx, τx, Vx (0) , Vx (1)))

can actually be written as
W ∗ (θ, (αx,Kx, Vx (θ)))

since neither ∆Γ (x, θ) nor F depend on Qx, τx and Vx
¡
θ0
¢
when θ0 6= θ. Finally, we also

have
W ∗ (θ, (αx,Kx, Vx (θ))) = (1− αx)W

∗ (θ, (0,Kx, Vx (θ))) .
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Thus, define the function

W (θ, V,K) =W ∗ (θ, (0,K, V ))

The function W (θ, V,K) is the one that we have been discussing in the text.
The function is increasing inK, because the return function is increasing inKx and the

constraint set∆Γ (θ, x) does not depend onKx. To see that the function is increasing in V ,
notice that the return only depends on α and K, but not on Q or τ . When V is increased
it remain possible to use the same policies for α and K, achieving the higher V through
decreases in τ or increases in Q. Thus, increasing V expands the set of payoff-relevant
policies. A similar argument establishes that Wc is increasing in Vc.

To see that W (θ, V,K) is concave in V when θ and K are fixed, suppose that there
are two values V1 and V2 such that

qW (θ, V1,K) + (1− q)W (θ, V2,K) > W (θ, qV1 + (1− q)V2,K) (36)

for some q ∈ (0, 1). For the given q, consider the value Vq = qV1 + (1− q)V2. The value
Vq can be promised to the entrepreneur by offering the policy implemented at V1 with
probability q and the policy implemented at V2 with probability (1− q); notice that such
policies are clearly feasible. The expected value of the firm in that case would be the
left hand side of (36). This is greater than the right hand side, contradicting the claim
that W (θ, qV1 + (1− q)V2,K) is the highest value of the firm that can be achieved while
giving Vq to the entrepreneur. A similar argument establishes the concavity ofWc. (Notice
that the argument cannot be applied to establish the concavity with respect to K given
(θ, V ), since K enters directly the return function.) Since W (θ, V,K) and Wc (θ, V,K)
are increasing and concave in V , the partial derivatives ∂W

∂V and ∂Wc
∂V are defined almost

everywhere.
Finally, the proof of part (2) is the same as in Clementi and Hopenhayn, with the only

change that now the upper bound of the region over which W (θ, ·,K) is linear depends
on (θ,K).

Proof of Proposition 3. If the first best is implemented then an investment K∗ must
occur in every period independently of the history of announcements. This implies that the
entrepreneur can achieve a value pR(K∗)

1−δ simply by announcing θ = 0 in every period and

stealing the output. Thus, in order to implement the first best policy we need V ≥ pR(K∗)
1−δ .

When this condition is satisfied the first best can be achieved by a policy of investing
K∗ in every period independently of past history, paying V − pR(K∗)

1−δ immediately to the
entrepreneur, and giving the entire output θtR (K∗) to the entrepreneur in each period.

Proof of Proposition 4. The optimal policy requires to achieve a level of capital K∗∗

whenever the announcement at t− 1 has been 0, and to liquidate otherwise. One possible
reporting policy for the entrepreneur is to announce θt = 0 at each period. This gives an
expected utility equal to

V ∗ = δ
pR (K∗∗)
1− δ

.
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Thus, any feasible contract that implements the first best must give at least V ∗ to the
entrepreneur. The individual rationality constraint of the lender then requires

W ∗ − V ∗ ≥ A,

thus confirming that the condition is necessary.
We now show that the condition is sufficient by describing a feasible policy that achieves

the first best. Suppose that investment follows the first best policy. Payments are as
follows:

• If θt = 0 then the entrepreneur pays zero and the firm continues.

• If θt = 1 then the entrepreneur pays zero. In the following period the firm is
liquidated and the entrepreneur is paid Q = pR(K∗∗)

1−δ if S = S (1,K∗∗) (i.e. the
entrepreneur told the truth), and zero otherwise.

We will show that this payment policy is incentive compatible and gives the entrepre-
neur exactly V ∗. Define eV L = pV H + (1− p)V L

V H = R (K∗∗) + δQ V L = δeV L

so that

eV L = p (R (K∗∗) + δQ) + (1− p) δeV L =⇒ eV L =
pR (K∗∗)
1− δ (1− p)

+
δp

1− δ (1− p)
Q.

Incentive compatibility is satisfied if

R (K∗∗) + δQ ≥ R (K∗∗) + δeV L =⇒ Q ≥ eV L

which is satisfied given the definition of Q.
At time 0 capital is zero. Announcing θ = 1 gives Q in the following period, while

announcing θ = 0 causes an investment of K∗∗ and gives a utility of eV L. Thus, the present
expected value for the entrepreneur is

V = δ
³
pQ+ (1− p) eV L

´
= δ

pR (K∗∗)
1− δ

.

We conclude that the proposed policy achieves the first best, it’s incentive compatible and
individually rational for both the lender and the entrepreneur.

Proof of Proposition 5. Let W ∗
c (θ,K) be the value function in case of continuation

when there is complete information, and Wc (θ, Vc,K) the value function in case of in-
complete information. Notice that Wc (θ, Vc,K) ≤ W ∗

c (θ,K) for each Vc, since the first
function is obtained solving a maximization problem with more constraints. Propositions
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3 and 4 imply that it is possible to find V + such that Wc (θ, Vc,K) = W ∗
c (θ,K) for each

K, θ and Vc ≥ V +.
Now observe that if α = 1 is optimal in the complete information case it must be

the case that S (1,K) ≥W ∗
c (1,K). Therefore S (1,K) ≥W ∗

c (1, Vc,K) and liquidation is
optimal in the incomplete information problem. This proves the ‘if’ part.

To prove the ‘only if’ part, suppose that the optimal policy under incomplete informa-
tion is α = 1 and W ∗

c (1,K) > S (1,K). It must be the case that S (1,K) ≥Wc (1, Vc,K)
for each Vc, otherwise we can find α < 1 and Vc = V

1−α such that Wc (θ, Vc,K) > S (1,K),
that is, we reach a greater value of the firm if we don’t liquidate, contradicting optimality
of α = 1. But this is not possible, since Wc (θ, Vc,K) =W ∗

c (θ,K) for Vc ≥ V +.

Proof of Proposition 6. The function Wc (θ, V,K) is almost everywhere differentiable
and by the envelope theorem

∂Wc (θ, V,K)

∂K
= dPr (Kn ≥ dK) + q (θ) dPr (Kn < dK) .

The liquidation value S (θ,K) is linear in K and

∂S (θ,K)

∂K
= q (θ) d.

Thus ∂S
∂K ≤ ∂Wc

∂K for each V . Since V(θ,K) is the point at which the line with intercept
S (θ,K) is tangent to Wc (θ, V,K), if the function Wc increases no less than the value
S (θ,K) then the point V(θ,K) cannot increase. In particular, if at

¡
V(θ,K),K

¢
we have

Pr (Kn > dK) then
∂Wc(θ,V(θ,K),K)

∂K > ∂S(θ,K)
∂K , so that the value of V(θ,K) decreases as K

increases.
To see the effect of a change in θ, observe that when we move from θ = 0 to θ = 1

the liquidation value increases by S − S +
¡
q − q

¢
dK. Now let W#

c (0, V,K) be the value
of continuation when θ = 0 but the policy prescribed for (1, V,K) is adopted. Since such
policy is not necessarily optimal we have W#

c (0, V,K) ≤Wc (0, V,K). Therefore

Wc (1, V,K)−Wc (0, V,K) ≤Wc (1, V,K)−W#
c (0, V,K) ≤

¡
q − q

¢
dK.

We conclude that S (1,K) − S (0,K) > Wc (1, V,K) −Wc (0, V,K). Since V(θ,K) is the
point at which the line with intercept S (θ,K) is tangent to Wc (θ, V,K) and S increases
more than Wc when θ increases, we conclude that V(1,K) > V(0,K).

The probability of liquidation can change with K only at points (θ, V,K) at which
α (θ, V,K) < 1. At such points we have

α (θ, V,K) = 1− V

V(θ,K)

and the conclusion therefore follows from the results on V(θ,K).
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Proof of Proposition 7. Consider problem (22). We want to apply Theorem 4 in
Milgrom and Shannon [11], and we will do so by showing that the objective function is
quasi-supermodular in the decision variables

¡
κ, τ (·) , V H (·) , V L

¢
and it satisfies increas-

ing difference in
¡¡
κ, τ (·) , V H (·) , V L

¢
;K
¢
.

The space where
¡
κ, τ (·) , V H (·) , V L

¢
is defined is the Cartesian product of the space of

probability distributions κ on [0,+∞), the space of functions τ (x) such that τ (x) ≤ R (x)
each x and the space of non-negative functions V H and V L. We define the ordering on
this spaces as follows:

1. κ ¹ κ0 if κ0 first order stochastically dominates κ.

2. τ ¹ τ 0 if τ (x) ≤ τ 0 (x) each x, and similarly for V H and V L.

3.
¡
κ, τ (·) , V H (·) , V L

¢ ¹ ¡κ0, τ 0 (·) , V H0 (·) , V L0¢ if each component of the first vector
is lower than the corresponding component of the second vector.

Since the objective function does not depend on τ and it is increasing in both V H and V L

(thus implying quasi-supermodularity) we only have to prove quasi-supermodularity with
respect to κ. For convenience, we remind here the reader of some basic definitions needed
to apply the Milgrom-Shannon theorem.

Given a partially ordered set X and two elements x,y in X, we define x ∧ y as the
largest element of X such that x ∧ y ¹ x and x ∧ y ¹ y. Similarly, x ∨ y is the smallest
element in X such that x ¹ x∨ y and y ¹ x∨ y. The set X is a lattice if, given x, y in X,
we have that x∧ y and x∨ y are also in X. A function f defined on the lattice X is quasi-
supermodular if, given two elements x, y ∈ X, whenever the inequality f (x) ≥ f (x ∧ y)
is satisfied we also have f (x ∨ y) ≥ f (y).

Let now consider the space of probability distribution on the positive real line endowed
with the first-order stochastic dominance order. Consider two distribution κ and κ0 rep-
resented by the cumulative distribution functions F and G respectively. Then κ ∨ κ0 has
cumulative distribution function H (x) = min {F (x) , G (x)}, while κ ∧ κ0 has cumulative
distribution function L (x) = max {F (x) , G (x)}. We will prove that for any function
f (x), if

R
f (x) dF ≥ R f (x) dL then R f (x) dH ≥ R f (x) dG. The first inequality can be

written as Z
f (x) dF ≥

Z
{x|F (x)≥G(x)}

f (x) dF +

Z
{x|F (x)<G(x)}

f (x) dG (37)

or Z
{x|F (x)<G(x)}

f (x) dF ≥
Z
{x|F (x)<G(x)}

f (x) dG.

The second inequality can be written asZ
{x|F (x)≥G(x)}

f (x) dG+

Z
{x|F (x)<G(x)}

f (x) dF ≥
Z

f (x) dG (38)
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or Z
{x|F (x)<G(x)}

f (x) dF ≥
Z
{x|F (x)<G(x)}

f (x) dG.

But this implies that whenever inequality (37) is satisfied, inequality (38) must also be
satisfied. Thus any function defined on the real numbers is quasi-supermodular when
defined over the space of probability distributions over the real line.

Finally, to prove that the objective function satisfies increasing difference in (κ;K) we
have to show that the difference between the objective function at K 0 and the objective
function computed at K is increasing in κ whenever K 0 > K. To see this, observe that
such difference is given by the function

I (θ,Kn,K)− I
¡
θ,Kn,K 0¢ =


d (K 0 −K) if Kn ≥ dK 0

(Kn − dK)− q (θ) (Kn − dK 0) if dK 0 > Kn ≥ dK
q (θ) d (K 0 −K) if dK > Kn,

which is increasing in Kn. Therefore, Eκ [I (θ,K
n,K)− I (θ,Kn,K 0)] is increasing in κ.

This proves that the optimal policy κ is increasing in K.
Similarly, if we fix K, the difference between the objective function at θ = 1 and at

θ = 0 is

I (0,Kn,K)− I (1,Kn,K) =

½
0 if Kn ≥ dK¡

q − q
¢
(Kn − dK) if dK > Kn,

so that it is decreasing in Kn. Therefore, Eκ [I (0,K
n,K)− I (1,Kn,K)] is decreasing in

κ. This proves that the optimal policy κ is decreasing in θ.
Suppose now that Kn

s > dK, so that at s investment is always strictly positive. Sup-
pose now that the quantity of capital is increased by a small amount ∆ such that the
inequality Kn

s > d (K +∆) still holds. It must be the case that the optimal policy re-
mains the same, so that the value of the value function increases by d∆. If this were not
the case then we would haveW (θ, V,K +∆) > W (θ, V,K)+d∆, but this implies that by
adopting at state (θ, V,K) the policy adopted (θ, V,K +∆) we would get a value strictly
higher than W (θ, V,K), a contradiction. A similar reasoning implies that the optimal
policy does not change when K

n
s < dK and we increase K by ∆.

At last, the third point follows immediately from the fact that the optimal policy eKn

remains the same when K increases to K +∆.

Proof of Proposition 8. Using the framework of the proof of Proposition 7, the difference
between the objective function at state (1, V,K) and at state (0, V,K) is

I (0,Kn,K)− I (1,Kn,K) =

½
0 if Kn ≥ dK¡

q − q
¢
(Kn − dK) if dK > Kn,

so that it is decreasing in Kn. Therefore, Eκ [I (0,K
n,K)− I (1,Kn,K)] is decreasing in

κ. This proves that the optimal policy κ is decreasing in θ.
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If the optimal policy at (1, V,K) involves only positive investment then the value of
the objective function does not depend on θ. Since the value function is increasing in θ,
the optimal policy must be the same at (0, V,K).

Proof of Proposition 9. For a given state s = (θ, V,K) the variable eY is given by

eY = ( S (θ,K) with prob. αeθR³ eKn
´
− I

³eθ, eKn,K
´
with prob. 1− α

and the variable fW is given by

fW =

(
0 with prob. α

W
³eθ, V ³eθ, eKn

´
, eKn

´
with prob. 1− α.

Let eY∆, fW∆, eKn
∆, α∆ be the variables corresponding to the state s +∆ = (θ, V,K +∆)

and let
Y = αS (θ,K) + (1− α)E

h
pR
³ eKn

´
− I

³
θ, eKn,K

´i
,

Y ∆ = α∆S (θ,K +∆) + (1− α∆)E
h
pR
³ eKn

∆

´
− I

³
θ, eKn

∆,K +∆
´i

,

W = (1− α)E
h
W
³eθ, V ³ eKn

´
, eKn

´i
,

W∆ = (1− α∆)E
h
W
³eθ, V ³ eKn

∆

´
, eKn

∆

´i
,

so that
W (s) = Y + δW W (s+∆) = Y ∆ + δW∆.

The expected returns are

r =
Y +W −W (s)

W (s)
=
(1− δ)W

W (s)

r∆ =
Y ∆ +W∆ −W (s+∆)

W (s+∆)
=
(1− δ)W∆

W (s+∆)
.

Therefore, the condition r ≥ r∆ is equivalent to

W (s+∆)

W (s)
≥ W∆

W
.

Suppose first that
Y ∆

Y
≥ W∆

W

This implies
Y ∆

W∆

Y
W

≥ 1→
Y ∆

W∆
+ δ

Y
W
+ δ

≥ 1→ Y ∆ + δW∆

Y + δW
≥ W∆

W
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→ W (s+∆)

W (s)
≥ W∆

W
,

so that we are done. Next assume

Y ∆

Y
<

W∆

W
. (39)

If this is the case we must have

Y ∆

Y
<

W (s+∆)

W (s)
<

W∆

W
,

which in turn implies
Y ∆

W (s+∆)
<

Y

W (s)
. (40)

Let ∆W = W (s+∆) −W (s) and ∆Y = Y ∆ − Y . Then inequality (40) can be written
as

∆Y

∆W
<

Y

W (s)
.

If α < 1 then Y
W (s) < 1. However, by the envelope theorem, we have

lim
∆K→0

∆Y

∆W
= 1.

Thus, for ∆K sufficiently small inequality (39) can’t be satisfied.

Proof of Proposition 10. Suppose first that at state s we haveKn
s > dK, i.e. investment

is always positive. In this case the variance of the return is

σ2s = Eeθ, eKn


eθR

³ eKn
´
−
³ eKn − dK

´
+W

³eθ, V ³eθ, eKn
´
, eKn

´
−W

W
− r

2
 .

Let
Z = Eeθ, eKn

heθR³ eKn
´
− eKn +W

³eθ, V ³eθ, eKn
´
, eKn

´i
.

Then we can write

r =
Z + dK −W

W

and

σ2s = E


eθR

³ eKn
´
− eKn +W

³eθ, V ³eθ, eKn
´
, eKn

´
− Z

W

2
 . (41)
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If Kn > dK then a slight increase ∆K in the level of capital does not change the optimal
policy. Thus, the numerator in (41) remains constant, while the denominator increases to
W + d∆K. The new variance is therefore

σ2s+∆ = E


eθR

³ eKn
´
− eKn +W

³eθ, V ³eθ, eKn
´
, eKn

´
− Z

W + d∆K

2
 < σ.

The proof for the case K
n
s+∆ < dK is similar.
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