
Power properties of a nonparametric test of the martingale 

hypothesis 
 

 

Julio A. Afonso Rodríguez 

Department of Applied Economics and Quantitative Methods 

Universidad de La Laguna 

 

 

 

 

Abstract 

In this paper we study the power properties of a simple nonparametric test of the 

martingale hypothesis recently proposed by Park and Whang (2005), and further studied 

by Escanciano (2007). Particularly, we are interested in obtaining the limiting 

distribution of this test statistic for several possible non-martingale non-stationary 

processes, such as the class of stochastic unit root processes, with particular attention to 

the so-called local-heteroskedastic integrated and weak bilinear unit root processes 

introduced by McCabe and Smith (1998) and Charemza et.al. (2005) and Lifshits 

(2006), respectively. We also consider the class of heteroskedastic (or stochastically) 

integrated processes introduced by Hansen (1992) and further generalized by Harris 

et.al. (2002). We also conduct a simulation experiment to evaluate numerically the 

power behaviour of this test statistic for each of these closely related, but different, 

alternatives. 
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1. Introduction 

One of the oldest, and more frequently analyzed, questions in economics and finance is 

that of the predictability of the asset prices. The formal treatment of this question has 

resulted in an equivalent statement known as the efficient market hypothesis which 

states that no systematic trading strategy that exploits the conditional mean dynamics of 

the observed prices can be more profitable in the long run than holding the market 

portfolio. Also, from the time series econometrics point of view, there exist subtle 

differences in the formulation of the hypothesis of non predictability when dealing with 

the increments of the price process. Hence, we get the connection of the martingale 

theory, the random walk paradigm in economic time series, and the unit root theory. In 

this paper we study the behavior and properties of a simple nonparametric test of the 

null hypothesis of a martingale process with mean independent increments against two 

different non-martingale nonstationary processes that could arise as plausible 

alternatives for describing economic and financial time series. The test statistic we 

examine is the one proposed by Park and Whang (2005) and the alternatives considered 

are two different versions of the so-called stochastic unit root (STUR) process, and the 

stochastically integrated (SI) process which represents a heteroskedastic integrated 

version of a standard integrated process. 

The paper is organised as follows. Section 2 is devoted to reviewing the martingale 

hypothesis and its implications, and the testing procedures we study. Section 3 

introduces the two types of alternatives mentioned above, their main characteristics and 

properties and states the main results of the paper concerning the limiting behavior of 

the test statistics for the null of a martingale under these nonstationary alternatives. 

Theoretical results are accompanied by some numerical results obtained through a small 

Monte Carlo experiment for assessing its finite-sample power performance. 

 

2. The martingale hypothesis and the test statistics 

The concept of martingale is closely related to that of a random walk, when making 

particular assumptions on the dependence structure of the increment series. Particularly, 

assuming a random walk with mean-independent increments, which is a stronger 

condition that uncorrelated increments, implies the martingale hypothesis 

1 1 1[ ] [ | ]t t t t tE X E X I X− − −= =  a.s.      (2.1) 

with 1{ , ,...}t t tI X X −=  the information set at time t, and tF  be the σ-field generated by 

tI  Alternatively, using the first differences, 1t t t tu X X X −= ∆ = − , tu  follows a 

martingale difference sequence (mds) when 1 1[ ] [ | ] 0t t t tE u E u I− −= =  a.s., which means 

that past and current information are of no use to forecasting future values of a mds. 

However, if tu  is a real-valued stationary time series, the martingale difference 

hypothesis (mdh) states that the following conditional moment restriction holds 

1 1[ ] [ | ]t t t tE u E u I− −= = µ  a.s., µ ∈ R 

The mdh slightly generalizes the notion of mds by allowing the unconditional mean of 

tu  to be nonzero and unknown, and states that the best predictor, in the sense of least 

mean square error, of the future values given the past and current information set is just 

the unconditional expectation, which can be called conditional mean independence. 

Also, given that the characteristic property of a mds is the fact that tu  is linearly 

unpredictable given any linear or nonlinear transformation of the past, 1( )tw I −  with 
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1{ , ,...}t t tI u u −= , then we get the following fundamental equivalence 

1 1[ ] [ | ]t t t tE u E u I− −= = µ  a.s., µ ∈ R    ⇔     1[( ) ( )] 0t tE u w I −− µ =  

for all 1tF − -measurable weighting function w(·), such that the moment exists. As is 

discussed in Escanciano and Lobato (2007), this last expression is the key element in 

developing a great variety of tests for the mdh, depending on the choice of the 

information set at time t based on the series of first differences, t ju −  (j ≥ 0), and the 

function w(·) to be used. However, exploiting this relationship, a general correlation test 

for tu  and the space spanned by 1tX −  can be constructed as a test for the original null 

hypothesis of a martingale behavior. To represent the complete space spanned by 1tX − , 

of all linear and nonlinear functions of 1tX − , Park and Whang (2005) use the indicator 

function of 1tX − , that is 1( )tI X x− ≤  for almost all x ∈ R, giving rise to the moment 

indicator 

1( ) [ · ( )]t tQ x E u I X x−= ≤        (2.2) 

that states the connection between the martingale hypothesis condition and the condition 

of no correlation, ( ) 0Q x =  for all values of x, through the expression 

1 1 1 1( ) [ [ · ( )| ]] [ [ | ]· ( )]t t t t t tQ x E E u I X x X E E u X I X x− − − −= ≤ = ≤  

Stute (1997), and Koul and Stute (1999) have used this type of measures based on 

stationary sequences to develop some simple nonparametric statistics to testing for 

model adequacy in standard regression and time series analysis. 

Alternatively, and in order to develop a general theory of testing for a martingale, 

Durlauf (1991) considers the periodogram-based estimate of the deviations of the 

spectral distribution function for the process of first differences, tu , from its theoretical 

shape when the periodogram is normalized by the sample variance, that is 
1

1/ 2

1

sin( )2 ˆ( ) ( ( ))
n

n n

k

k r
U r n k

k

−

=

π= ρπ ∑  

with 1ˆ ˆ ˆ( ) (0) ( )n n nk k−ρ = γ γ , the k-th order sample autocorrelation coefficient, with 

1

ˆ ( ) (1/ ) ( )( )
n

n t n t k n

t k

k n u u u u−
= +

γ = − −∑  

the k-th order sample autocovariance coefficient. The correction for the sample mean 

extends the analysis to the case where the time series of interest is a random walk with 

drift in levels. Under the martingale difference hypothesis for tu , ˆ ( ) 0n kρ ⇒  for all k ≥ 

1, so the analysis will focus on the autocorrelation function in which case can be shown 

that ( ) ( ) ( ) (1)nU r V r B r rB⇒ = − , with ( )V r  a standard (first-level) Brownian bridge. 

Making use of this fundamental result, Durlauf (1991) propose several spectral shape 

tests (see Corollary 2.1, p.363) based on different global measures of excessive 

fluctuations in ( )nU r . Among all its proposals, the two more frequently used test 

statistics are those based on the Cramér-von Mises (CvM) and Kolmogorov-Smirnov 

(KS) measures defined as 

2

1

(1/ ) ( / )
n

n n

k

CvM n U k n
=

= ∑  

and 

1,...,
max | ( / ) |n n
k n

KS U k n
=

=  

respectively, which usually display good finite sample and asymptotic properties. 
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Instead of making use of some particular implications of the martingale hypothesis on 

some usual sample statistics, as the case of the sample serial correlation coefficients, 

Park and Whang (2005) consider that the random element that form the basis of the test 

statistics for the martingale hypothesis is defined as the following marked empirical 

process 

1

1

1( ) · ( )
n

n t t

t

Q x u I X x
n −

=
= ≤∑        (2.3) 

with marks given by the random sequence 1,..., nu u , and jumps at the points 

0 1 1, ,..., nX X X − , while ( ) ( )n nM x Q x n=  is a stochastic process with parameter x ∈ R, 

that takes values in D(R), the space of cadlag functions on R, with ( ) 0nM −∞ =  and 

1( ) ( ) (1/ ) n

n n t tM B r n u=∞ = = ∑ . Given that this stochastic process can also be written as 

1 1

1 1

1 1( ) · ·
n n

t t
n t t

t t u

X X
M x u I x u I y

n n n n
− −

= =

  = ≤ = ≤   σ   
∑ ∑    (2.4) 

where / uy x= σ , with 2

uσ  introduced in Assumption(b) below, it can also be defined the 

following modified version, scaled by 2 2

1(1/ ) n

n t tn u=σ = ∑  to define a pivotal test statistic 

as 
1( ) ( )n n nV x M x−= σ         (2.5) 

Thus, in order to obtain useful limiting results for ( )nV x , Park and Whang (2005) 

introduce the following standard assumption on the sequence of first differences, tu , 

that ensures the application of the martingale limit theory. 

Assumption 2.1. Innovation sequence 

Given the filtration tF  introduced earlier, ( tu , tF ) is a mds such that: 

(a) 2 2 2

1 1(1/ ) [ | ] 0n p

n t t t us n E u F= −= ∑ → σ >  

(b) 4

1 1sup [ | ]t t tE u F≥ − < κ < ∞  a.s. 

Under these conditions, we then have 1( ) (1/ ) ( ) ( )n

n t t uB r n u B r W r== ∑ ⇒ = σ , and 

2 2p

n uσ → σ , which gives 

( ) ( )n uM x M x⇒ σ  

and ( ) ( )nV x M x⇒ , with 

1

0
( ) ( ( ) ) ( )M x I W r x dW r= ≤∫       (2.6) 

for x ∈ R, with ( ) 0M −∞ =  and ( ) (1)M W∞ = . With these results, two different types 

of statistics from ( )nV x  may be constructed, namely, the KS-type statistic given by 

sup | ( ) |n n
x

S V x
∈

=
R

        (2.7) 

and the CvM-type statistic defined as 

2

1

1

(1/ ) ( )
n

n n t

t

T n V X −
=

= ∑         (2.8) 

based on the empirical distribution measure of 1tX − , with limiting null distributions 

given by 

sup | ( ) |n
x

S S M x
∈

⇒ =
R

        (2.9) 

and 
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1
2

0
( ( ))nT T M W r dr⇒ = ∫        (2.10) 

respectively, by standard application of the continuous mapping theorem since (2.7) and 

(2.8) are continuous functionals of (·)nV . The testing procedure based on any of these 

two statistics rejects the null hypothesis of a martingale for large values, with 

asymptotic critical values given in Table 1 of Park and Whang (2005), which are shown 

in the last column of the following two tables, together with the finite-sample critical 

values computed via direct simulation of Sn and Tn in (2.7) and (2.8) for sample sizes n 

= 100, 250, 500, and 1000 and 1000 independent replications. 

Table 2.1. Finite-sample and asymptotic quantiles of the null distribution of Sn 

Significance level n = 100 250 500 1000 ∞ 

0.99 0.575 0.595 0.608 0.592 0.612 

0.95 0.713 0.740 0.729 0.769 0.765 

0.90 0.802 0.844 0.804 0.879 0.865 

0.10 2.025 2.086 2.090 2.097 2.119 

0.05 2.314 2.334 2.342 2.353 2.388 

0.01 2.801 2.779 2.910 3.019 2.911 

Table 2.2. Finite-sample and asymptotic quantiles of the null distribution of Tn 

Significance level n = 100 250 500 1000 ∞ 

0.99 0.052 0.062 0.055 0.060 0.055 

0.95 0.090 0.101 0.099 0.105 0.101 

0.90 0.133 0.138 0.132 0.161 0.145 

0.10 1.635 1.643 1.559 1.687 1.650 

0.05 2.089 2.119 2.163 2.165 2.165 

0.01 3.073 2.814 3.331 3.600 3.328 

From these results, it is quite remarkable the stability of the null distributions even for 

very small sample sizes, which also represents a notable advantage for the use of these 

test statistics in the sense that excessive random fluctuations of these measures must be 

mainly due to the violation of the null hypothesis. 

The testing procedures proposed by Park and Whang (2005) have the attractive property 

of being quite simple to compute, compared to similar tests of Durlauf (1991). Durlauf’s 

tests based on sample correlations are tests of the shape of the spectral density function, 

which is rectangular under the null hypothesis of no correlation. The simulation results 

in Park and Whang (2005) show that this martingale test is much more powerful against 

a wide range of non-martingale alternatives, not only the linear non-Gaussian cases that 

are covered by Durlauf’s tests, but also the nonlinear non-Gaussian alternatives.
1
 

Also, when considering the application of the Durlauf’s tests to economic or financial 

time series, usually characterized by certain type of conditional heteroskedastic 

behavior, Deo (2000) shows that the null limiting distribution of ( )nU r  is not longer a 

Brownian bridge but another Gaussian process that depends on the dependence structure 

of the second moments of the series. The two cases considered are the two major 

models of conditionally heteroskedastic martingale differences, viz. the stochastic 

volatility (SV) and the generalized autoregressive conditionally heteroskedastic 

(GARCH) model. In order to preserve the usual limiting distribution, Deo (2000) 

propose to introduce a particular nonparametric correction of ( )nU r  that requires, under 

                                                 
1
 It is also worth to mention the work by Kumagai (2001) where, based on an earliest version of the paper 

(viz. Park and Whang (1999)), it is proposed a unit-root type specification test for stochastic processes 

generated by linear functions of nonstationary integrated processes, in order to test the random walk 

hypothesis in asset prices. 
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the null, the finiteness of eight moments for the result to hold. This technical 

requirement seems to be too strong and unrealistic in practice for many conditionally 

heteroskedastic series. 

However, for the testing procedures based on the marked empirical process ( )nQ x , 

these situations do not provoke any modification of the limiting results obtained under 

conditional homoskedasticity, given the robustness of the invariance principles to 

conditionally heteroskedastic martingale difference processes.
2
 

 

3. Power under non-martingale nonstationary alternatives 

The class of first-order random coefficient autoregressive process, RCA(1), can serve as 

the generating mechanism of a wide range of very different behaviours of a time series, 

including stationarity, non-stationarity and even explosive episodes. In what follows, we 

assume that the data generating process (DGP) of a univariate observed time series is 

given by 

1,...,t t tX d t n= + η =        (3.1) 

where it is decomposed into td  and tη , the deterministic and stochastic trend 

components, respectively. The leading cases for td  are the no deterministics 

component, 0td = , the constant case, 0td = α , and the constant and linear trend case, 

0 1td t= α + α . All these cases can be formulated as particular cases of the p-th order, p ≥ 

0, polynomial trend function given by ,t p p td ′= α τα τα τα τ , with 0 1( , ,..., )p p
′= α α ααααα  and 

, (1, ,..., )p

p t t t ′=ττττ . The case of no deterministics is simply given by 1p p+= 0αααα . In what 

follows we assume this last situation, and the extension to the case of a non-martingale 

deterministically integrated process tX  will be considered in a further extension of the 

present work.
3
 For the stochastic component we assume that it is given by a RCA(1) 

process of the form 

1t t t t−η = α η + ε         (3.2) 

with 

                                                 
2
 See, e.g., Hansen (1991) for the proof of the near epoch dependence property of a GARCH(1,1) process 

without imposing strict stationarity, and Kim, Cho and Lee (2000) for the proof of the mixingale property 

of a covariance stationary GARCH(1,1) process with finite four moment. These two properties ensure the 

application of standard asymptotic theory as, for example, the required invariance principles. For a more 

recent and general treatment of this questions see Kulperger and Yu (2005) for the general case of a 

covariance stationary GARCH(p,q) and also the contributions by Carrasco and Chen (2002) and Hill 

(2009) for more general cases, including stochastic volatility models. 
3
 From (2.1), we have that the marked empirical process ( )

n
M x  can be decomposed as 

1 1 1 1

1 1

( ) (1/ ) ( / / ) (1/ ) ( / / )
n n

n t t t t t t

t t

M x n d I n x d n n I n x d n− − − −
= =

= ∆ η ≤ − + ∆η η ≤ −∑ ∑  

with 1 0

1

( ) (1/ ) ( )t

n

n t n n
t

M x n I x−η α

=

= ∆η ≤ −∑  in the case of a constant term, 
0t

d = α , and 

1 0 1 1 0 1

1 1 1

1 1

( ) (1/ ) ( [ ]) (1/ ) ( [ ])t t

n n
t t

n tn n n n n n
t t

M x n n I x n I x− −η α −α η α −α

= =

 = α ≤ − + α + ∆η ≤ − + α 
 

∑ ∑  

in the case of a constant term and a linear trend, 
0 1t

d t= α + α , with the terms 
0
/ nα  and 

0 1
( )/ nα − α  

asymptotically negligible, but with the term 
1 1
( ) ( ) ( )t t

nn
n O nα = α =  in the last case. Thus, except in 

the first situation, the constant term case, and in large samples, it may be expected some nonnegligible 

effects due to these components. 
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t tα = φ + φ          (3.3) 

that nests a great variety of stationary and nonstationary processes with very different 

stochastic properties depending on the particular assumptions made on the sequences tε  

and tφ . In this paper we are particularly interested in the class of the so-called stochastic 

unit root (STUR), or randomized unit root, processes, for which the nondegenerate 

random coefficient tα  has expected value one, [ ] 1tE α = ,
4
 and that is given by a 

recursive combination of a random walk and a noise process. This type of processes, 

having a root that is not constant, but stochastic, and varying around unity, represent a 

quite natural extension from the perfect or fixed unit root case when [ ] 0tVar α =  (which 

is denoted by I(1)), and its sample paths can alternate between some periods of 

stationarity and a mildly explosive behaviour. Since its introduction by McCabe and 

Tremayne (1995), Leybourne, McCabe and Tremayne (1996), Leybourne, McCabe and 

Mills (1996), and Granger and Swanson (1997), this type of processes has received a 

great attention, both at the theoretical and the empirical level of analysis, given the 

difficulties in distinguishing between exact and stochastic unit roots and the fact that 

stochastic unit roots can arise naturally in economic and financial theory. 

An interesting property of (3.2) is that, under quite general conditions on tφ  and tε  such 

as weak exogeneity with 1 1[ , ] [ ] 0t t t tCov E− −α η = ε η =  and contemporaneously 

uncorrelated [ , ] 0t tCov α ε = ,
5
 the process tη  exhibits conditional heteroskedasticity, 

with 1 1 1[ ] [ | ]t t t t tE E− − −η = η η = φη , and 2 2

1 1 1[ ] [ | ] [ ]t t t t t tVar Var Var− − − εη = η η = φ η + σ . This 

makes this type of processes plausible to capture some of the most commonly known 

stylized facts of many economic and financial time series. Also, with tφ  an iid sequence 

of random variables with zero mean and 2[ ]tVar φφ = σ , the main stochastic properties of 

tη  in (3.2)-(3.3) can be determined by means of two criticality parameters associated to 

the random autoregressive coefficient tα , namely 2 2 1/ 2( ) sgn( )φτ = φ + σ φ , where sgn( )φ  

takes values 1 and −1 according to φ ≥ 0 and φ < 0 respectively, and the top Lyapunov 

exponent defined as [log | |]tEλ = φ + φ . Note that 2 2 2 2[ ]tE φτ = α = φ + σ , and 

(1/ ) log( [| | ])m

tm Eλ ≤ φ + φ  for any m > 0 by Jensen’s inequality, and 2log( )λ ≤ τ  for m 

= 2. It follows from Nicholls and Quinn (1982)
6
 that (3.2) has a strictly stationary 

                                                 
4
 Granger and Swanson (1997) consider a different representation for this type of processes, that can be 

called a exponential stochastic unit root, where exp( )
t t

α = φ , and 
0 1t t t

u−φ = ρ + ρφ +  is a stable Gaussian 

AR(1) process, |ρ| < 1, with 2(0, )
t u

u iidN σ∼ . In this setup, [ ] 1
t

E α =  only if 2

u
σ  if fixed at the value 

2

0
2 (1 )

u
σ = − ρ + ρ , when 

0
0α <  and 0<α<1, or 

0
0α >  and −1<α<0, that gives [ ]

t
Var α =  

0
exp( 2 /(1 )) 1 0− ρ − ρ − > . Also, taking 

0
[ ] /(1 )

t
Eφµ = φ = ρ − ρ , we have that a second order Taylor 

expansion of the exponential function around φµ  gives 
2

exp( )(1 ) exp( ) ( )
t t p t

Oφ φ φα = µ − µ + µ φ + φ , so that 

this process cannot be written as in (3.3). If instead, simply assuming that 
t

φ  is a zero mean stationary 

sequence, as in McCabe and Smith (1998), then we get 
2

1 ( )
t t p t

Oα = + φ + φ . 

5
 McCabe and Tremayne (1995) assume that the processes 

t
α  and 

t
ε  are mutually dependent with 

contemporaneous covariance [ , ] [ ]
t t t

Cov Varα ε = ψ α  and serially independent, with | | [ ]
t

Varψ < ε , so 

that these two processes are not contemporaneously linearly dependent. 
6
 For a more recent study on the general stochastic properties of a RCA(1) process see, e.g., Aue, Horváth 

and Steinebach (2006), and Berkes, Horváth, and Ling (2009), and their results related to the quasi-

maximum likelihood estimation of the model parameters under a variety of assumptions concerning the 
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solution with finite second-order stationary moment as well as almost sure convergence 

if and only if 2 1τ < . The solution is given by 0t k k t k

∞
= −η = ∑ π ε , with 0 1π =  and 

1 1

0 0 ( )k k

k j t j j t j

− −
= − = −π = Π α = Π φ + φ , k = 1, 2, … However, for 2 1τ ≥  the above solution for 

tη  continues to be a strictly stationary (and ergodic) solution to (3.2) if 0λ < , and only 

if 0λ ≤ , but with a infinite second moment. Thus, 2 2 2 1[ ] ( 1)( 1)n

tVar −
εη = σ τ − τ −  for τ ≠ 

1, and 2[ ]tVar n εη = σ  for τ = 1. Note that this variance increases exponentially for 
2 1τ > , and increases linearly for 2 1τ = . Nagakura (2009) develops the relevant 

asymptotic theory for explosive RCA(1) models (denoted ERCA(1)), although these 

results seems to be of limited practical relevance given that this explosive behavior is 

rarely observed for actual time series data. 

Recently, McCabe, Martin and Tremayne (2005) consider the general representation of 

some stationary and nonstationary models commonly adopted in the economics and 

finance literature making use of the unified framework proposed by Cramer (1961) for 

purely non-deterministic processes, to study their persistence properties in terms of the 

behaviour of traditional measures of persistence. The range of models considered extend 

the I(0)/I(1) paradigm including a nonstationary fractionally integrated noise model and 

other two nonlinear nonstationary models that do not lie into the I(d) class, the STUR 

model (3.2)-(3.3) and the stochastically (or heteroskedastic) integrated (SI) model, 

which is a multiplicative combination of a random walk and a noise process, together 

with an additive error term. 

The so-called stochastically integrated (SI) process is a generalized version of the local 

level model based on unobserved components, with the addition of a third component 

with high, but limited, persistence that represents an intermediate case between 

stationarity and nonstationarity. The original idea comes from the heteroskedastic 

cointegrating regression equation proposed by Hansen (1992), where the error term 

follows a bi-integrated process that resembles the nonstationary heteroskedastic 

behavior of the integrated regressors. This original proposal was later extended by 

Harris et.al. (2002, 2003), and McCabe et.al. (2003), where McCabe et.al. (2006) give 

the more generalized version of this model given by 

, , ,t m m t t q t q t
′ ′η = + ε +w v hππππ        (3.4) 

with the m, and q-dimensional nonstationary vectors ,m tw  and ,q th  given by 

, , 1 , ,0 ,

1

t

m t m t m t m m j

j

−
=

= + = +∑w w wυ υυ υυ υυ υ       (3.5) 

and 

, , 1 , ,0 ,

1

t

q t q t q t q q j

j

−
=

= + = +∑h h hξ ξξ ξξ ξξ ξ       (3.6) 

and where the zero mean 2q+m+1-dimensional error vector , , ,( , , , )t t m t q t q t
′ ′ ′ ′= ε vζ υ ξζ υ ξζ υ ξζ υ ξ  is 

assumed to be stationary. When m m≠ 0ππππ , then tη  is said to be stochastically integrated, 

SI. If, in addition, , ,[ ] 0q t q tE ′ >v v , tη  is said to be heteroskedastically integrated (HI) 

due to the term , ,q t q t
′v h , whereas if , ,[ ] 0q t q tE ′ =v v  (or, equivalently , ,[ ]q t q qVar = 0ξξξξ  when 

,m tw  ≠ ,q th ) then tη  is simply difference stationary, or I(1). So, a stochastically 

integrated process encompasses both ordinary and heteroskedastic integration. The 

                                                                                                                                               
stability of the model. Hwang and Basawa (2005) also studied the consistency properties of the least 

squares (LS) and weighted LS estimates of the autoregressive parameter in the explosive RCA(1) model. 
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model considered in Harris, et.al. (2002, 2003), and in McCabe et.al. (2003) is given by 

(3.4)-(3.6) with m = q, so that , ,m t m t=w h , and thus , ,t m t m t tη = + εwππππ , with 

, ,m t m m t= + vπ ππ ππ ππ π . The term given by the last two components in (3.4), , ,t t q t q t
′ρ = ε + v h  

(say), behaves like a stochastically integrated process net of its stochastic trend 

component in the sense that, even though the innovations ,q tξξξξ  have an infinitely 

persistent effect on ,q t s+h , their effect on the level of , ,q t s q t s+ +′v h  is only transitory. This 

implies that the product process , ,q t q t
′v h ,

7
 and thus tρ , is stochastically trendless, even if 

,q tv  is correlated with ,q tξξξξ . This characterization of the nature of the dependence of tρ  

is termed the stochastically trendless property, and states that the behavior of the 

process up to time t has a negligible effect on its behavior into the infinite future. 

Formally, under proper assumptions on the finiteness of moments of ,q tv  and ,q tξξξξ  it 

must be show that ( ) 0p

tc s →  as s→∞, for fixed t, where ( )tc s  is defined as 

, , , ,( ) [ ] [ ] [ ] [ ]t t t s t s t t s q t s q t t s q t s q tc s E E E E+ + + + + +′ ′= ρ − ρ = ε + − ε +v h v h  

where the conditional expectation is based on the information available for all the 

elements of tρ  up to time t.
8
 

The discrete time Cramer’s (1961) representation of an arbitrary (non-deterministic) 

series is given by 

,

0

t t t k t k

k

∞

− −
=

=∑Z A e  

with te  a zero mean non-degenerate vector white-noise process with [ ]t tE =e e I , and 

the non-stochastic matrix coefficients ,t t k−A  constructed so as to absorb any 

heteroskedastic structure in the disturbances. These coefficients are thus assumed to 

satisfy the square summability condition 2

0 ,|| ||k t t k

∞
= −∑ < ∞A  for all t. In order to embed 

the SI model in (3.4)-(3.6) into this framework we assume that the error vector tζζζζ  

follows a linear process, ( )t tL= C eζζζζ  with 2

1 || ||a

k kk∞
=∑ < ∞C , a ≥ 2, and 0C  having full 

rank, with [ ] (1) (1) 0t tE ′ ′= >C Cζ ζζ ζζ ζζ ζ  a general (non-diagonal) covariance matrix. Then we 

define the random vector 

,

, ,

1

m t k

t k

t k q t k q j

j

t k

−
−

− −
=

−

 
 
 ′=
 
 ε 

∑G v

υυυυ

ξξξξ  

with a general covariance matrix [ ]t k t k t kE− − −′= G GΣΣΣΣ , and *

, , ,t t k t t k t t k− − −= +A A B , with 

                                                 
7
 Despite of this result, in strict sense, the term 

, ,q t q t
′v h  is nonstationary heteroskedastic, exhibiting a 

linear trend in variance. 
8
 McCabe et.al. (2003) show that, under the assumption that the sequence 

t
ζζζζ  follows a linear process 

defined on iid innovations, the above condition is satisfied. We conjecture that this results also follows 

under more general assumptions on this sequence, for example, when considering that the components of 

the error vector 
t

ζζζζ  are strong (α-) mixing when adapted to the natural filtration given by its past 

observations. Thus, making use of the maximal inequalities for unconditional and conditional covariances 

of strong mixing sequences in Roussas and Ioannides (1987) and DeMei and Lan (2013), respectively, 

and under additional assumptions on the existence of unconditional absolute moments of order greater 

than 2, then it can be shown the condition | ( ) | 0
t
c s →  a.s. for fixed t and s→∞. 
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* 1/ 2 * 1/ 2

, ,

1 0 0 0

0 0 , 0 0 , 1,..., 1

0 0 0 0

m m

t t m t t t k m t k

m m

k t− −

′ ′   
   ′ ′= = = −
   ′ ′   

A 0 A 0

0 0

π ππ ππ ππ π
Σ ΣΣ ΣΣ ΣΣ Σ  

1/ 2

,

0 1

0 0

0 0

m

t t m t

m

′ 
 ′=
 ′ 

0

B 0

0

ΣΣΣΣ  

*

,t t k− =A 0  for k ≥ t, and ,t t k− =B 0  for k ≥ 1, then we have that tZ  is given by 

1
1/ 2 * 1/ 2 1/ 2

, , ,

0 0

( ) ( ) ( )
t

t t t k t k t k t t k t k t k t t t t

k k

∞ −
− − −

− − − − − −
= =

= = +∑ ∑Z A G A G B GΣ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ  

where the first component, tZ  is such that 1

0 , , 1 ,

t t

t m k m t k q t j q j tZ −
= − =′ ′= ∑ + ∑ + εvπ υ ξπ υ ξπ υ ξπ υ ξ , with 

,0 , ,0t t m m q t qZ ′ ′η = + +w v hππππ . This gives a generalized version of the Cramer 

representation with the standard case given by 0( )L =C C . Making use of this general 

representation for a SI process based on weak white noise innovations, the results in 

McCabe, Martin and Tremayne (2005) imply that for m m≠ 0ππππ  the long-run impulse 

response and variance ratio measures indicate substantial persistence mimicking that of 

the pure random walk process, while that for m m= 0ππππ  the results are ambiguous. 

However, for a STUR process given by equations (3.2) and (3.3), with [ ] 1tE α =  and 

[ ] [ ] 0t tVar Varα = φ > , the evidence from both measures of persistence is unambiguous 

indicating a high degree of persistence, although with very different limiting behavior. 

Despite these differences in the persistence performance of this two different non-

stationary processes, we consider the possibility of being plausible non-stationary 

alternatives to the null of a martingale process. Formally, we introduce this possibility 

in the following assumption. 

Assumption 3.1. Nonstationary non-martingale alternative processes 

We assume that, as a nonstationary non-martingale alternative, the stochastic trend 

component tη  of the observed process tX  in (3.1) is given either by: 

(a) A STUR-type process, with [ ] 1tE α =  (φ = 1) and [ ] 0tVar α ≥  in (3.2)-(3.3), with 

(a.1) / 2

t tn−δφ = ω υ , ω ≥ 0, or 

(a.2) 1t n t−φ = α ε , /n nα = α , α ≥ 0 

(b) A stochastically integrated (SI)-type process of the form 

, , ,t m m t t q t q t
′ ′η = + ε +w v hππππ  

with initial conditions 1/ 2

,0 ,0, ( ),0 1/2m q pO n −λ= < λ ≤w h . 

The process described in Assumption 3.1(a.1) is the local-heteroskedastic integrated 

(LHI) version of a STUR process proposed by McCabe and Smith (1998), while that the 

process considered in Assumption 3.1(a.2) is the so-called weak bilinear unit root (weak 

BLUR) process as has been proposed by Charemza et.al. (2005) and Lifshits (2006), 

which is the nonstationary version of the BL(1,0,1,1) process 1 1( )t t t t− −η = φ + αε η + ε . 

Under iid(0, 2

εσ ) innovations εt, the stationary condition is given by 2 2 2 1εφ + α σ < , that 

is clearly not satisfied with φ = 1. The scaling of the bilinear coefficient α by the square 

root of the sample size is a convenient reparameterization that allows to apply Lifshits’ 

(2006) invariance principle. 

Given that each alternative process in Assumption 3.1 is based on a different set of 
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random error sequences, we introduce their properties in the following Assumption 3.2. 

Assumption 3.2. Linear assumption on the error sequence 

(a) In the case of the STUR-type nonstationary non-martingale processes given in 

Assumption 3.1(a) above, we have that [| |]k k

t kE υ = κ ≤ κ < ∞ , k = 0, 1, ..., and 

( )t
t t

t

L
ε = = υ 

C eζζζζ         (3.7) 

with 0( ) , (1) 0k

k kL L∞
== ∑ >C C C , 2 2

1 || ||k kk∞
=∑ < ∞C , where 0, 1,( , )t t te e ′=e  is an iid 

sequence with 2[ ]tE =e 0 , and 2,2[ ]t tE ′ =e e ΣΣΣΣ , so that it is verified that 

[ ] [ ]
1/ 2 1/ 2 1/ 20 0

2,2
1 11 1

( ) ( )
, (1) (1) 0

( ) ( )

nr nr

t
t

tt t

B r W r
n n

B r W r
− −

= =

ε      ′= ⇒ = = >    υ     
∑ ∑ C Cζ Ω Ω Σζ Ω Ω Σζ Ω Ω Σζ Ω Ω Σ  (3.8) 

where 2

0 0 01 0 01 1( ) [ 1 ( ) ( )]B r W r W r= ω − ρ + ρ , and 1 1 1( ) ( )B r W r= ω , with 0 ( )W r  and 

1( )W r  two independent standard Wiener processes, and 01ρ  the (two-sided) long-run 

correlation between 0 ( )B r  and 1( )B r . 

(b) In the case of the SI-type nonstationary non-martingale process given in Assumption 

3.1(b) above, with , , ,( , , , )t t m t q t q t
′ ′ ′ ′= ε vζ υ ξζ υ ξζ υ ξζ υ ξ  a zero mean 2q+m+1 dimensional error 

vector, we have that ( )t tL= C eζζζζ  with 0( ) k

k kL L∞
== ∑C C , (1) 0>C , 

2 2

1 || ||k kk∞
=∑ < ∞C , and te  an iid sequence with [ ]tE =e 0 , and [ ]t tE ′ =e e ΣΣΣΣ . Then, it 

is verified that 
[ ]

1/ 2 1/ 2

1

( ) ( )
nr

t

t

n r r−

=
⇒ =∑ B Wζ Ωζ Ωζ Ωζ Ω       (3.9) 

with ( )rW  a standard vector Wiener process, and (1) (1) 0′= >C CΩ ΣΩ ΣΩ ΣΩ Σ  the long-run 

covariance matrix of 0 1 2( ) ( ( ), ( ) , ( ) , ( ) )m q qr B r r r r′ ′ ′ ′=B B B B . 

This assumption is quite standard in time series econometrics when dealing with 

nonstationary processes, and allows to introduce a certain controlled degree of serial 

dependence through the linear process framework. Due to the fact that the STUR-type 

process given by the weak BLUR specification in Assumption 3.1(a.1) above only 

depends on the sequence tε , we use the results in (3.7)-(3.8) only concerning to the 

stochastic distributional limit of the scaled partial sum process of tε , that is, 
1/ 2 [ ]

1 0 0 0( ) ( )nr

t tn B r W r−
=∑ ε ⇒ = ω . Also, for any particular form of the stochastic trend 

component tη  in (3.2) or (3.4) above, we define the normalized partial sum processes 

( ) (1/ ) ( / ) ( 1)/ 0 1n tH r n t n r t n t n= η ≤ < + ≤ ≤ −    (3.10) 

and ( ) (1/ )t h
n t hn

H n−
−= η , h ≤ t ≤ n, 0 ≤ h ≤ n−1, and as in Section 2, let 1t t tu −= η − η  be 

the sequence of first differences given by 

1t t t tu −= φ η + ε          (3.11) 

for a STUR-type process, and 

, , , 1 , 1 , ,

, , , 1 , ,

( )t m m t t q t q t q t q t q t

m m t t q t q t q t q t

u

z

− −

−

′ ′ ′ ′= + ∆ε + − +
′ ′ ′= + + +

v v h v

z h v

π υ ξπ υ ξπ υ ξπ υ ξ
π υ ξπ υ ξπ υ ξπ υ ξ     (3.12) 

for the SI alternative, with t tz = ∆ε , and , , , 1q t q t q t−= −z v v . We are now in position to 

formulate the following results concerning the distributional limits of the stochastic 

trend component tη  and of the process of first differences, tu , for each type of 

nonstationary nonlinear alternative considered in Assumption 3.1, as well as for the 
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sample variance 2

nσ . 

Proposition 3.1. Under Assumption 3.2 on the error terms: 

(a) When the stochastic trend component tη  is generated under the LHI alternative, 

with 1δ = , 0ω ≥ , and 10 1 [ ]k t t kE∞
= −λ = ∑ ε υ , then: 

(a.1) 0 1 0 10

0

( ) ( ) ( ) ( ) ( ) ·

r

nH r H r B r B s dB s rω

 
⇒ = + ω + λ 

 
∫    (3.13) 

(a.2) 1( ) (1)t
t n t t pn

u H O−= ω υ + ε =  

(a.3) 
1 1

2 2 2 2 2

0 1 01
0 0

( ) 2 ( )n Y H s ds H s dsω ω ωσ ⇒ = σ + ω σ + ωγ∫ ∫    (3.14) 

with 2 2

0 [ ]tEσ = ε , 2 2

1 [ ]tEσ = υ , and 01 [ ]t tEγ = ε υ ; 

(b) When the stochastic trend component tη  is generated under the weak bilinear 

integrated alternative, then: 

(b.1) 
2 2

20
0 0 0 0

0

1
( ) ( ) ( ) ( ( ) )

( )

r

n

s
H r H r A r dW s ds r

A s
α α

α

+ α ω
⇒ = ω − αω + αω∫  (3.15) 

(b.2) 1
1( ) (1)t

t n t t pn
u H O−

−= α ε + ε =  

(b.3) 
1 1

2 2 2 2 2

0 0 0
0 0

( ) 2 (1) ( )n Y H s ds H s dsα α ασ ⇒ = σ + α σ + αγ∫ ∫   (3.16) 

with 2 2

0 0 2
( ) exp( ( ) ( ))rA r B sα = α − α ω , 2 2 2

0 (1)eCω = σ , 2 2

0 [ ]tEσ = ε , 0 1(1) [ ]t tE −γ = ε ε ; 

(c) When the stochastic trend component tη  is generated by a stochastically integrated 

sequence, then: 

(c.1) ,( ) ( ) ( ) ( )n m q m qH r H r C r C r⇒ = +      (3.17) 

(c.2) 
1

, , ,0 , , ,

1

( / ) (1/ ) ( )
t

t m m t t q t q q k q t q t p

k

u z n n n O n
−

=

 ′ ′ ′= + + + + = 
 

∑z h vπ υ ξ ξπ υ ξ ξπ υ ξ ξπ υ ξ ξ  

(c.3) 
[ ]

,1

1

(1/ ) ( ) ·
nr

t q q

t

n u J r r
=

⇒ + Λ∑  

(c.4) 2 ( )n pO nσ = , 
1

2

2 , 2
0

(1/ ) ( ) ( )n q q q q qn Y s s ds′σ ⇒ = ∫ B BΓΓΓΓ    (3.18) 

where ( ) ( )m m mC r r′= Bππππ  and ( )qC r  are the weak limits of ,[ ][(1/ ) ]m m nrn′ wππππ  and 

1/ 2 [ ]

1 ,[ ] , ,[ ] ,( [ ])nr

t q nr q t q nr q tn E−
= ′ ′∑ −v vξ ξξ ξξ ξξ ξ , respectively, and with 

2

0

( ) ( ) ( )

r

q q qJ r s d s′= ∫B Z , 1/ 2 [ ]

1 , ( )nr

t q t qn r−
=∑ ⇒z Z , ,1 1 , ,[ ]q j q t q t jE∞

= −′Λ = ∑ z ξξξξ  

, , , , , ,[ ] 2 (0) ( (1) (1))q q q t q t q q q q q qE ′ ′= = − +z zΓ γ γ γΓ γ γ γΓ γ γ γΓ γ γ γ , , , ,( ) [ ], 0,1q q q t q t ii E i−′= =v vγγγγ . 

Proof. Part (a) mainly follows from Theorem 1 in McCabe and Smith (1998). See 

Appendix A for specific details in our case. Part (b) follows from Lifshits (2006) in the 

case of an iid error sequence tε , and from Afonso-Rodríguez (2012) under the linear 

assumption for the innovations in the weak BLUR process. For the proof of part (c) see 

Appendix B. 

Remark 3.1. First note that, under a STUR-type LHI alternative with serially correlated 

sequences ( , )t tε υ , the limiting process ( )H rω  can be decomposed as 
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2 2

0 01 0 1 01 1 0

0

1 10
0 01 1 1 1 1

0 010

( ) 1 ( ) 1 ( ) ( )

( ) ( ) ( ) ·

r

r

H r W r W s dW s

W r W s dW s r

ω

 
= ω − ρ + ωω − ρ 

 
 ω λ+ ω ρ + ωω + ω ω ρ 

∫

∫
 

where 2

0 1 1 1( ) ( ) (1/2)( ( ) )r W s dW s W r r∫ = − , and 2

0 1 10 0 1[ ( )] · [ ]( / )E H r rω = ω ω ω λ ω ω , with 

10 0 1( / )λ ω ω  the one-sided long-run correlation coefficient between tε  and tυ . In this 

case, under serial correlated error terms tε  and tυ  this limiting process induces an 

additional bias component though the drift term [ ( )]E H rω . 

Remark 3.2. All the above results in Proposition 3.1 determine that the pivotal test 

statistic ( )nV x  defined in (2.5), 

1 1

1

1( ) ( ) ·
n

t
n n n t

tn

X
V x M x u I x

n n

− −

=

 = σ = ≤ σ  
∑  

has a well defined limiting distribution under any of the alternatives particularly 

considered in this paper, but with a very different behavior in each case. This implies 

that the testing procedure is inconsistent in the usual sense, that is, the finite-sample 

power performance only depends on the parameters defining each nonstationary 

alternative and does not depend on the sample size. The following Proposition 3.2 states 

the distributional limit of the test statistic ( )nV x . 

Proposition 3.2. Under Assumption 3.2 on the error terms and taking the results in 

Proposition 3.1, we have for each of the non-martingale nonstationary alternatives 

considered that 

1/ 2( ) ( ) ( )nV x VH x Y MH x−⇒ =  

with 1

0( ) ( ) ( ( ) ) ( )nM x MH x I H r x dH r⇒ = ∫ ≤ , and 2

n Yσ ⇒ , where H(r) is given by the 

corresponding weak limit ( )H rω , ( )H rα , or , ( )m qH r  in (3.13),(3.15),and (3.17), and Y 

is given by the weak limit Yω , Yα  or qY  defined in (3.14), (3.16), and (3.18). 

Proof. This limiting distribution is readily derived from the results in Proposition 3.1 

and the continuous mapping theorem, since the statistic ( )nV x  is a continuous functional 

of ( )nH r . Also, simply replacing ( )M x  in (2.6) by the above limiting result ( )VH x  in 

(2.9) and (2.10) we get the weak limit of the test statistics nS  and nT  defined in (2.7) 

and (2.8) under each of the non-martingale nonstationary alternative considered here. 

Remark 3.3. The main implication of these results is that the asymptotic behavior of 

the test statistic under each alternative is determined by the combination of the weak 

limit of its two components, the empirical marked process ( )nM x  in the numerator, and 

the sample variance 2

nσ  in denominator, which are plagued of many nuisance 

parameters. Particularly relevant is the result for the two types of STUR processes 

considered, where for the element in the denominator we have that 2( )pY Oω = ω  and 

2( )pY Oα = α , so that 1( ) ( )pVH x O −
ω = ω  and 1( ) ( )pVH x O −

α = α , respectively, 

determining a reduction in the estimated value of the test statistic when increasing the 

value of ω and α in each case. Thus, when considering the test statistic based on the 

scaled version of ( )nM x , we might expect a serious problem of under-rejection of the 
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null hypothesis, and thus an incorrect detection of the martingale behavior. 

In order to illustrate these findings numerically, we perform a small Monte Carlo 

experiment to evaluate the power performance of this testing procedure for each of the 

three alternatives considered in this section. The results are shown in Tables 3.1-3.3 in 

Appendix C, where the power based on the test statistics nS  and nT  is computed by 

making use of the finite sample critical values for sample sizes n = 100, 250 and 500. 

As indicated in Remark 3.3, for the two version of the STUR-type alternatives, we 

display the results for the empirically marked process ( )nM x  (that is, for the 

unnormalized test statistic ( )nV x ). 
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Appendixes 

A. Proof of Proposition 3.1(a) Asymptotics under local-heteroskedastic integration 

By backward substitution in (3.2) we have that 
1

1 0 1, 1,

1

t

t t t t t t k k t

k

Z Z
−

− +
=

η = α η + ε = η + ε + ε∑  

with 

,

1 1

(1 )
t t

k t j j

j k j k

Z
= + = +

= α = + φ∏ ∏ , k = 1, ..., t−1. 

As indicated in McCabe and Smith (1998), from a notational perspective it is more 

convenient to deal with forward summations than with backward summations, so the 

order of the subscripts on jα  and kε  are reversed, so that tη  can also be written as 

0 1, 1 1, 1

2

t

t t k k

k

Z Z −
=

η = η + ε + ε∑  

where 

1,

1 1

(1 )
k k

k j j

j j

Z
= =

= α = + φ∏ ∏ , k = 1, 2, ..., t 

Let k−1 = [na], with a ∈ [0,1]. Then 1, 1 1,[ ]k naZ Z− =  can be written as 

[ ] [ ]

1,[ ]

11

[ ] [ ]1
2

1 0 1

(1 ) exp log(1 )

( 1)
exp ·exp

2

na na

na j j

jj

na nak
k

j j

j k j

Z

k

==

+∞
+

= = =

 
= + φ = + φ 

 
   −= φ φ   +   

∑∏

∑ ∑ ∑
 

where 
[ ] [ ]

(1 ) / 2 1/ 2

1 1

na na

j j

j j

n n−δ −

= =

 
φ = ω υ 

 
∑ ∑  

and 
[ ] [ ]

2 2 1 / 2 1 2

1 1

( )
na na

k k k k

j j

j j

n n n+ −δ −δ − +

= =

 
φ = ω ω υ 

 
∑ ∑  

making use of the LHI specification in Assumption 3.1(a.1). Then we have 
[ ] [ ]1

2 2 1 / 2 1 2

0 1 0 1

2 2 1 / 2

0

( 1)
( ) [| |]

2

( )

na nak
k k k

j j

k j k j

k

k

E n n n E
k

a n n

+∞ ∞
+ −δ −δ − +

= = = =
∞

−δ −δ

=

 − φ ≤ ω ω υ +  

≤ ω κ κω

∑ ∑ ∑ ∑

∑
 

where the element on the second hand of the above inequality is O(1) for any δ ≥ 1 

whenever / 2( )o nδκω = , which gives 

[ ]
(1 ) / 2 1/ 2 1

1,[ ]

1

[ ]
(1 ) / 2 1/ 2 1 1

1

exp (1 ( ))

1 ( ) (1 ( ))

na

na j p

j

na

j p p

j

Z n n O n

n n O n O n

−δ − −δ

=

−δ − −δ −δ

=

   = ω υ +  
   

  
= + ω υ + +   

  

∑

∑
 

that is 
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[ ]
(1 ) / 2 1/ 2 1

1,[ ]

1

1 ( )
na

na j p

j

Z n n O n−δ − −δ

=

 
= + ω υ + 

 
∑  

Then, substituting 1, 1kZ −  in tη  we have 

(1 ) / 2 1/ 2 1

0

1

1
(1 ) / 2 1/ 2 1

1

2 1

1 ( )

1 ( )

t

t j p

j

t k

k j p

k j

n n O n

n n O n

−δ − −δ

=

−
−δ − −δ

= =

  
η = η + ω υ +   

  
  

+ ε + ε + ω υ +   
  

∑

∑ ∑
 

that is 
1

1 1/ 2 (1 ) / 2 1/ 2

0

1 2 1

1/ 2 1/ 2 3/ 2

1

1

(1 ( ))

( )

t t k

t p k k j

k k j

t

k p

k

O n n n n n

n n O n

−
−δ − −δ −

= = =

− − −δ

=

  η = η + + ε + ω ε υ   
   

 + ε − ε 
 

∑ ∑ ∑

∑
 

Thus, scaling by n
−1/2

 and taking δ = 1 we get 
[ ] [ ] 1

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

[ ] 0

1 2 1

( )(1 (1)) (1)
nr nr k

nr p k k j p

k k j

n n O n n n O
−

− − − − −

= = =

  η = η + + ε + ω ε υ +   
   

∑ ∑ ∑  

with 

1/ 2

[ ] 0 1 0 10

0

( ) ( ) ( ) ( ) ·

r

n nrH r n B r B s dB s r−  
= η ⇒ + ω + λ 

 
∫  

where 10 1 [ ]k t t kE∞
= −λ = ∑ ε υ  is the limit in probability of 

[ ] 1
1

2 1

[ ]
nr k

j k

k j

n E
−

−

= =

υ ε∑∑ . Given that the 

sequence of first differences, 1t t tu −= η − η , is given by / 2

1t t t tu n−δ
−= ωυ η + ε , then 

2 2 2 2 2 / 2 2

1 1

1 1 1

1 / 2

01 1

1

2 1/ 2 / 2 2 2 2

1 1

1
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1
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n

t
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n
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t
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−
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=

− −δ
−

=

− −δ
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 + γ ω η 
 
 + ω η υ − σ 
 
 + ω η ε υ − γ 
 

∑ ∑ ∑

∑

∑

∑

 

Clearly, when δ = 1 we get 
1 1

2 2 2 2 2

0 1 01
0 0

( ) 2 ( )n H s ds H s dsω ωσ ⇒ σ + σ ω + γ ω∫ ∫  

given that the two last terms between brackets are both Op(1). 
g 

 

B. Proof of Proposition 3.1(c) Asymptotics under stochastic integration 

First of all, given the specification of the stochastically integrated process as in 

Assumption 3.1(b), we have that 
1/ 2 1/ 2 1/ 2 1/ 2

[ ] ,[ ] [ ] ,[ ] ,[ ]( ) ( )nr m m nr nr q nr q nrn n n n− − − −′ ′η = + ε +w v hππππ  

where for the first component we have the standard result  
1/ 2

,[ ]( ) ( ) ( )m m nr m m mn C r r−′ ′⇒ =w Bπ ππ ππ ππ π  
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where [ ( )] 0mE C r = , and 2 2[ ( ) ] ·m mE C r r= σ , with 2

,m m m m m
′σ = π Ω ππ Ω ππ Ω ππ Ω π . Second, for the last 

component we have that 
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1/ 2 1/ 2 1/ 2
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=
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where 1/ 2

,[ ] ,0( ) ( ) (1)q nr q p pn O n o− −δ′ = =v h , and 

,[ ] , , ,[ ] , ,[ ] ( [ ]) ( [ ]) 0q nr q j q j q nr q j qE Tr E Tr E ∞′ ′ ′= → =v v vξ ξ ξξ ξ ξξ ξ ξξ ξ ξ , as n→∞ 

which gives 
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and thus 1/ 2

[ ] , ( ) ( ) ( )nr m q m qn H r C r C r− η ⇒ = + . For the process of first differences, that is 

given by 

, , , 1 , ,t m m t t q t q t q t q tu z −′ ′ ′= + + +z h vπ υ ξπ υ ξπ υ ξπ υ ξ  

we have that the normalized partial sums can be written as 
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where the last two terms between brackets are both Op(1) so that by standard application 

of the weak convergence results to stochastic integrals we have 
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1 , ( )nr

t q t qn r−
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= −′Λ = ∑ z ξξξξ . 

Finally, the sample variance of the sequence of first differences can be decomposed as 

2 2 2 2
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where we can write 
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All the above terms given between brackets are finite in probability, that is Op(1), which 

gives 

1
1/ 2 1/ 2

, 1 , , , 1 2 , 2
0

1

(1/ ) ( ) [ ]( ) ( ) ( )
n

q t q t q t q t q q q q q

t

n n E n Y s s ds− −
− −

=

′ ′ ′⇒ =∑ ∫h z z h B BΓΓΓΓ  

with , , , , , ,[ ] 2 (0) ( (1) (1))q q q t q t q q q q q qE ′ ′= = − +z zΓ γ γ γΓ γ γ γΓ γ γ γΓ γ γ γ , where , , ,( ) [ ], 0,1q q q t q t ii E i−′= =v vγγγγ . 

This result clearly means that 2 ( )n pO nσ = , so that 2(1/ ) n qn Yσ ⇒ . 

g 
 

C. Finite-sample power results 
 

Table 3.1. Finite-sample adjusted empirical power at 5% nominal level of the test 

statistics Sn and Tn without scaling by 
2

n
σ . The case of the LHI process 

 n = 100  n = 250  n = 500 

 Sn Tn  Sn Tn  Sn Tn 

ω = 1.00 0.149 0.117  0.162 0.126  0.142 0.112 

1.25 0.165 0.110  0.175 0.128  0.176 0.129 

1.50 0.207 0.164  0.228 0.161  0.243 0.177 

1.75 0.232 0.161  0.261 0.170  0.242 0.175 

2.00 0.294 0.211  0.275 0.197  0.276 0.190 

2.25 0.322 0.219  0.327 0.213  0.303 0.213 

2.50 0.320 0.212  0.342 0.230  0.354 0.226 

2.75 0.395 0.241  0.393 0.233  0.369 0.227 

3.00 0.398 0.244  0.416 0.247  0.410 0.264 

4.00 0.527 0.313  0.506 0.321  0.567 0.343 

5.00 0.647 0.515  0.628 0.392  0.673 0.414 

Note. Results based on 1.000 independent replications, with 
2( , ) ( , )t t iidN′ε υ 0∼ ΣΣΣΣ , 

2 2

2,2( , )diag ε υ= σ σ = IΣΣΣΣ . 
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Table 3.2. Finite-sample adjusted empirical power at 5% nominal level of the test 

statistics Sn and Tn without scaling by 
2

n
σ . The case of the weak BLUR(1,1) process 

 n = 100  n = 250  n = 500 

 Sn Tn  Sn Tn  Sn Tn 

α = 1.00 0.251 0.199  0.267 0.200  0.267 0.208 

1.25 0.329 0.273  0.349 0.274  0.290 0.227 

1.50 0.372 0.289  0.390 0.308  0.398 0.290 

1.75 0.399 0.317  0.454 0.331  0.480 0.363 

2.00 0.517 0.391  0.502 0.384  0.507 0.404 

2.25 0.574 0.430  0.556 0.433  0.581 0.435 

2.50 0.592 0.455  0.647 0.496  0.619 0.440 

2.75 0.673 0.489  0.669 0.509  0.714 0.536 

3.00 0.746 0.613  0.719 0.536  0.708 0.550 

4.00 0.860 0.752  0.849 0.733  0.868 0.748 

5.00 0.947 0.915  0.950 0.926  0.969 0.923 

Note. Results based on 1.000 independent replications, with 2 2(0, ), 1
t

iidN ε εε σ σ =∼ . 

 

Table 3.3. Finite-sample adjusted empirical power at 5% nominal level of the test 

statistics Sn and Tn. The case of the SI process 

π1 = 0  π1 = 1  

(a) Version without scaling by 2

n
σ  Sn Tn  Sn Tn 

n = 100 1.000 1.000  0.996 0.994 

250 1.000 1.000  1.000 1.000 

500 1.000 1.000  1.000 1.000 

π1 = 0  π1 = 1  

(b) Version with scaling by 2

n
σ  Sn Tn  Sn Tn 

n = 100 0.799 0.991  0.357 0.661 

250 1.000 1.000  0.940 0.959 

500 1.000 1.000  0.992 0.997 
Note. Results based on 1.000 independent replications, in the case m = q = 1, with w1,t 

≠ h1,t, and 1, 1, 1, 4 4,4( , ,v , ) ( , )t t t t t iidN′= ε υ ξ 0 I∼ζζζζ . 

 


